
Abstract BFMs Outshine Virtual Interfaces
for Advanced SystemVerilog Testbenches

David Rich
Mentor Graphics, Inc

San Jose, CA
dave_rich@mentor.com

Jonathan Bromley
Doulos Ltd

Ringwood, England
jonathan.bromley@doulos.com

Abstract— Sophisticated functional verification environments using SystemVerilog typically
make use of the language's object-oriented programming features to build a flexible, re-
usable test environment and components that can easily be extended and reconfigured.
Ultimately, though, the test environment must interact with the signals, events, and clock
cycles of the device-under-test (DUT) and its supporting structures. Published tutorial and
methodology material on SystemVerilog has overwhelmingly recommended use of the virtual
interface construct to achieve this interaction. A virtual interface is a reference to a static
interface instance. The class-based test environment, constructed dynamically at the
beginning of a simulation run, can interact with a DUT through such virtual interfaces,
allowing it to be written without knowledge of the detailed static instance hierarchy of the
DUT and its surroundings. In such a test environment, manipulation of DUT signals is
performed by a bus functional model (BFM) object that makes reference to signals in the
DUT only through a virtual interface that will be bound to an interface instance at run time.

This paper reviews this style of using virtual interfaces, and then presents in detail an
alternative approach in which the BFM is not implemented in the class-based SystemVerilog
testbench. Instead, a suitable generic BFM abstract base class is created. Virtual methods in
this base class provide access to all the BFM functionality that will be required by a
testbench, but no implementation is provided. Instead, the concrete BFM is implemented as a
class derived from this generic BFM, but whose code is embedded in the SystemVerilog
module or interface that will be instanced alongside the DUT to connect to its signals. We
show that this approach brings a number of practical and methodological benefits,
minimizing the testbench code's dependence on details of the DUT's connections and
providing a more intuitive separation of concerns at the lowest level of the testbench while
fitting neatly into an object-oriented testbench design style.

Finally this paper will consider how this style of BFM and the more conventional style based
on virtual interfaces interact with other SystemVerilog constructs, such as clocking blocks, to
further isolate the testbench from the design.

 I. THE TWO KINGDOMS OF THE VERIFICATION WORLD

For the current authors, and for the majority of working
verification engineers in our industry, a design-under-test or
device-under-test (DUT) is most likely to be coded in
Verilog or VHDL using the register-transfer level (RTL) of
abstraction. At this level, information about the current state
of the design is carried on signals (nets or variables, in
Verilog) and the design advances from its current state to a
future state thanks to signal updates executed in response to
signal value changes. The design's topology is determined
once and for all at the start of simulation, in a process
generally known as elaboration of the design.

By contrast, the test environment that is used to exercise
a DUT in simulation may be constructed in a variety of
styles. However, recent developments in languages and tools
for verification have encouraged the adoption of object-
oriented programming (OOP) techniques for building the test
environment. An environment built using OOP has a
topology that is determined not in a distinct elaboration step,
but instead by the action of procedural software that
constructs verification objects and assembles them into a
complete testbench. Although it is common (and often very
convenient) for this testbench topology to be constructed
early in the simulation, and to be left unmodified
thenceforward, it is certainly possible in principle for the
testbench topology to be modified dynamically during the
course of a simulation run.

In consequence, we find that typical verification
environments naturally fall into two sections: on the one
hand the statically-instantiated invariant topology of RTL
DUT code and perhaps some support structures for the DUT;
and on the other hand, the dynamically-constructed and
flexible structure of the OOP testbench. The coding styles,
design approaches and dominant concerns of these two
sections are so different that we are tempted to think of them
as separate kingdoms in the verification world. But they are
kingdoms that must of necessity share a border. It is the
frontier-posts of that border that concern us in this paper.

 II. THE CHALLENGE OF CONNECTING OBJECTS TO RTL

SystemVerilog [1] offers object-oriented programming
within a language that also fully supports all existing
constructs of the Verilog Hardware Description
Language(HDL) [2]. Consequently, verification code written
using SystemVerilog's object-oriented features can directly
read and manipulate nets and variables in an RTL design
using Verilog's hierarchical name resolution mechanism.
Figure 1 shows how this could be achieved, using a trivial
example in which the RTL design contains only one
variable, and that variable is stimulated by code in the
run() method of a SystemVerilog class Stimulus. Note
that the stimulus generator object (instance stimulus of
class Stimulus) is constructed dynamically by code in the
testbench module stimulus_module.

While this mechanism clearly works, and is
straightforward, it fails to address a number of important
practical concerns for verification environment developers.
Some of the most pressing of these concerns are described
below.

A. Synchronous Signal Timing Abstraction
In a typical modern design, large groups of signals are

likely to be synchronous to a clock (although, of course,
there may be many such clock domains in a big design).
Within each clock domain, all synchronous signals should be
driven and/or sampled with some fixed timing relationship
relative to the clock. It is straightforward, but tedious, to
manage these timing relationships using procedural code in
the testbench. Such timing clutters the procedural code and
confuses two levels of abstraction that most verification
engineers prefer to keep distinct: the event-driven, signal-
level abstraction of the RTL code, and the cycle-based
abstraction of the testbench in which timing is expressed in
clock cycles rather than nanoseconds.

B. Encapsulation and Re-use of Verification Code
Elements
In good object-oriented programming practice, classes

form self-contained, re-usable, extensible elements. The
Stimulus class in Figure 1 clearly does not meet these
criteria. It contains not merely a hard-coded signal name but
even a hard-coded Verilog hierarchical path name.
Consequently it would be useless in an even slightly
modified verification environment.

Figure 1: Trivial RTL DUT stimulated by a SV object
module dummy_RTL_module(input R);
 ...
endmodule

package stimulus_pkg;
 class Stimgen;
 task run();
 repeat (10)
 #5 testbench_Top.R = 1'b0;
 #5 testbench_Top.R = 1'b1;
 end
 endtask
 endclass
endpackage

module stimulus_module;
 import stimulus_pkg::*;
 initial begin
 Stimgen stimgen;
 stimgen = new;
 stimgen.run();
 end
endmodule

module testbench_Top;
 reg R;
 dummy_RTL_module DUT(R);
 stimulus_module tester();
endmodule

Stimulus and monitoring elements are very likely to be
written to interact with a standardized set of signals or
interface protocol, and therefore have the potential for wide
re-use across verification projects. Any element containing
hard-coded path or signal names is immediately disqualified
from such re-use.

C. Clumsy Code
The need to specify signal names with full hierarchical
qualification on each occasion the signal is modified leads to
code that is difficult to read and difficult to maintain. It is
clear that some indirection is required between the testbench
class and the RTL with which it interacts.

 III. VIRTUAL INTERFACE

The indirection mentioned above requires the testbench
class to have some kind of reference or pointer into the RTL
environment. SystemVerilog provides a specific mechanism
to achieve this, known as a virtual interface.

Before discussing virtual interfaces, we will first describe
briefly the interface construct of SystemVerilog.

A. Interface
An interface is a design unit in SystemVerilog, broadly

similar to a module, but having certain special features that
make it especially well suited to the description of
interconnect structures. Interfaces are described in more
detail in references [3], [5] and [7]. Interfaces are like
modules in that they are statically instantiated, with their
instances becoming members of the elaborated hierarchy.
Consequently, any interface instance has a Verilog
hierarchical path name.

B. Taking a Reference to an Interface
A virtual interface is a SystemVerilog variable that can

hold a reference to an interface instance. A variable of virtual
interface type can be given a value (i.e. can be made to
reference an existing interface instance) by assigning the
hierarchical path name of the chosen interface instance to it.
Once this has been done, members (nets and variables) of the
referenced interface instance can be accessed using the "."
select operator, just as if the variable stood for the interface's
full hierarchical path name.

In other respects, though, a virtual interface variable is
like any other variable in that it can be passed as an argument
to a subprogram, copied to another variable of appropriate
type, compared for equality with another variable and so
forth.

Figure 2 modifies the code example of Figure 1 to use an
interface to contain the signal that will be manipulated by the
testbench, with a virtual interface holding a reference to the
appropriate interface instance. The organization of this code
is now much more satisfactory than that of Figure 1. The
interface declaration dummy_intf encapsulates all the
connections needed to hook to the DUT module, or any

module having a similar external interface. The testbench
class Stimulus no longer needs any knowledge of the
layout of the DUT and its surrounding infrastructure. Instead
it merely knows that it is interacting with some instance of a
dummy_intf, which is known to contain a well-understood
collection of nets and variables representing the interconnect
structure of interest. A reference to that instance will be
passed into the object via its constructor argument - and,
indeed, could be updated later in the life of the simulation if
required.

C. Virtual Interfaces in a Wider Context
For use in a realistic, generally applicable verification

methodology there remain some unsatisfactory features in
Figure 2. Although the stimulus class is now usefully
decoupled from the DUT and test environment, and therefore
can be re-used, it remains tightly coupled to the
dummy_intf interface definition; these two pieces of code
therefore must remain locked together. It is also necessary to
hook the DUT to the signals in this interface. In our example
we have chosen to do it by hierarchical reference into the
interface instance, but other methods are possible (see for
example [7]).

Figure 2: The example of Fig.1 modified to use a
virtual interface

module dummy_RTL_module(input R);
 ...
endmodule

interface dummy_intf();
 reg R;
endinterface

package stimulus_pkg;
 class Stimgen;
 virtual dummy_intf V;
 function new(virtual dummy_intf V);
 this.V = V;
 endfunction
 task run();
 repeat (10)
 #5 V.R = 1'b0;
 #5 V.R = 1'b1;
 end
 endtask
 endclass
endpackage

module stimulus_module;
 import stimulus_pkg::*;
 initial begin
 Stimgen stimgen;
 stimgen = new(testbench_Top.di);
 stimgen.run();
 end
endmodule

module testbench_Top;
 dummy_intf di();
 dummy_RTL_module DUT(di.R);
 stimulus_module tester();
endmodule

Finally, we note that it is necessary to pass the
appropriate instance name as an argument to the stimulus
class's constructor, but typically the constructor call is not
located in the same piece of code that instantiates the
required interface. In the specific example of Figure 2 it is
the top-level testbench structure module testbench_Top
that instantiates the interface, and therefore controls its
instance name; but it is the verification component, in
module stimulus_module, that constructs the stimulus
object and therefore needs to know the interface's instance
name. This issue is part of the wider problem of verification
component configuration, which will be discussed in more
detail later.

None of these problems detract from the usefulness of
virtual interfaces in providing a flexible connection between
the dynamic world of software-like verification components
and the statically-instantiated environment of the DUT and
its support structures. However, it is clear that careful
attention to testbench organization is needed in order to
maintain the reusability of class-based verification
components.

 IV. BUS FUNCTIONAL MODELS

A. Review of traditional module-based BFMs
In traditional HDL-based verification practice, a bus

functional model (BFM) is a component, typically packaged
as a module, whose purpose is to mimic the activity found on
a collection of signals (such as a bus) without necessarily
mimicking the detailed internal behavior of any specific
device connected to those signals. Verilog HDL makes it
very easy and convenient to create BFM modules. The
signals that will be manipulated by the BFM appear as ports
of the module, and operations that the BFM can perform are
coded as tasks or functions in the module, which will be
called by procedural code in a test environment. Figure 3
shows a simple Verilog BFM that imitates the behavior of an
asynchronous serial transmitter. Its only port is the simulated
serial line output. Task calls into the module can configure
the BFM for serial data rate and other features; the necessary
configuration information is stored in variables in the
module. Another task, send, can be called by the test code
to cause the BFM to perform appropriate activity on its
output port.

B. BFMs in an OOP verification environment
Module-based BFMS as described in IV.A are useful in

simple block-level testbenches, but the statically instantiated
nature of Verilog modules makes them insufficiently flexible
for re-use in large verification environments following a
modern OOP methodology. Instead we prefer to code our
BFMs as classes. Configuration and stimulus-generation
tasks are readily modeled as public methods of the BFM
class. Verification environments of arbitrary complexity and
flexibility can be constructed dynamically, using procedural
code in a testbench environment class to construct and
manage appropriate instances of the BFM and other classes.

Published verification methodology guidelines such as [6],
[7], and [9] describe in detail how such environments can be
deployed in practice.

References [7] and [9] are somewhat dogmatic
concerning the use of interfaces and virtual interfaces to
connect class-based BFMs to the statically instantiated DUT
structures. Other methodologies are less specific in their
recommendations, allowing the environment developers
some discretion in implementing this low-level but essential
part of testbench functionality. In the remaining sections we
describe an alternative style of connection between BFM and
DUT using a well-known software engineering design
pattern that we believe offers significant practical benefits
for re-use and testbench organization.

 V. ABSTRACT BFM

A. Abstract base class to represent the API
Our starting-point for an alternative style of BFM

connection is to note that the public interface (application
programming interface or API) presented to a verification
environment by a re-usable BFM should take the form of a
set of virtual methods. In this way, users of the BFM can
remain ignorant of its implementation details, and class
extension can easily be used to create alternative BFM
implementations that nevertheless present identical APIs to
the rest of the verification environment.

Such an API can usefully be encapsulated as an abstract
base class whose sole contents are the public methods, coded
as pure virtual methods. Once such an abstract base class has
been defined, variables of that class type can be used to hold
references to an instance of any concrete BFM class that
inherits from the abstract base class. Testbench code that
makes use of such a BFM can do so via variables of the

Figure 3: UART transmitter BFM
module UART_Tx(output logic line);

 int NBits;
 time BitPeriod;

task setNBits(input int N);
 if (N>0 && N<=10) NBits = N;
 endtask : setNBits

 task setBitPeriod(input time T);
 if (T>0) BitPeriod = T;
 endtask : setBitPeriod

 task send(input logic [9:0] d);
 line = 0; // start bit
 repeat (NBits) begin
 #BitPeriod line = d[0];
 d = d >> 1;
 end
 #BitPeriod line = 1; //stop
 #BitPeriod;
 endtask : send

endmodule : UART_Tx

abstract base class type, conveniently decoupling the
remainder of the test environment from details of BFM
implementation. In software engineering circles, this
technique is effectively known as the template method
design pattern [13]. From the perspective of this paper,
however, the most important aspect of this decoupling is that
the connection of a BFM to its target HDL signals can also
be hidden by this same mechanism.

B. Concrete Implementations Tightly Coupled to the DUT
It is preferable to decouple an abstract BFM base class

from the DUT and its supporting structures as completely as
possible in the interests of reusability. However, there must
also be at least one class derived from this base class that
implements the BFM's concrete functionality. This
implementation class must manipulate the DUT signals
directly, and it is convenient for its code to exist in a scope
where those signals are directly visible. This scope should be
the module or interface that implements the set of signals
that the BFM will manipulate.

Figure 4 presents an example of an abstract BFM class
APB3_BFM forming the public API to a BFM that can
perform transactions on the well-known APB3 peripheral
bus structure [10]. The base class is declared in a common
package will be imported into a number of different scopes.
Note how the base class is specified to be abstract by means
of the virtual qualifier in its declaration. The interface
APB3_TB_intf creates the standard set of APB3 bus
signals, and also declares a derived BFM class
APB3_concrete_BFM that implements the API declared
in the base class. Within the same interface, an instance of
the concrete BFM class is created and initialized. A reference
to this instance can then be passed to any part of the
testbench that has a variable of APB3_BFM type, and calls to
the concrete class's methods can be made through that
variable.

 VI. BENEFITS OF THIS STRUCTURE

The arrangement outlined in V. has a number of useful
benefits. Because the concrete BFM implementation class is
embedded in the same scope that declares the relevant bus
signals, it has direct access to those signals without any form
of hierarchical reference. Furthermore, the BFM code is
naturally locked to the bus signal declarations, avoiding the
need to keep two independent design units together. The
package APB3_pkg that defines our abstract BFM class can
readily be imported into any design unit that needs it,
without concern for the implementation details of the bus or
its BFM.

The bus signals are declared in an interface. This
interface can easily be extended to incorporate modports
[1][5], providing a convenient way to connect the interface to
SystemVerilog RTL designs that would normally be
connected to a physical bus interface.

Figure 4: Abstract BFM class with concrete
implementation in an interface

package APB3_pkg_Fig4;
 virtual class APB3_BFM;
 pure virtual task write (
 int unsigned addr, data);
 pure virtual task read (
 int unsigned addr,
 output int unsigned data);
 endclass
endpackage
interface APB3_TB_intf(input bit PCLK);
 import APB3_pkg_Fig4::*;
 logic PENABLE, PWRITE, PSEL, PREADY;
 logic [15:0] PADDR, PWDATA, PRDATA;
 class APB3_concrete_BFM extends APB3_BFM;
 task write(int unsigned addr, data);
 @(posedge PCLK)
 PSEL <= 1'b1;
 PENABLE <= 1'b0;
 PWRITE <= 1'b1;
 PADDR <= addr;
 PWDATA <= data;
 @(posedge PCLK)
 PENABLE <= 1'b1;
 do @(posedge PCLK); while (!PREADY);
 PSEL <= 1'b0;
 PENABLE <= 1'b0 ;
 endtask
 task read (int unsigned addr,
 output int unsigned data);
 @(posedge PCLK)
 PSEL <= 1'b1;
 PENABLE <= 1'b0;
 PWRITE <= 1'b0;
 PADDR <= addr;
 @(posedge PCLK)
 PENABLE <= 1'b1;
 do @(posedge PCLK); while (!PREADY);
 PSEL <= 1'b0;
 PENABLE <= 1'b0 ;
 data = PRDATA;
 endtask
 endclass
 APB3_concrete_BFM bfm = new;
endinterface
module APB3_TB_top;
 import APB3_pkg_Fig4::*;
 bit CLK;
 always #5 CLK = ~CLK; // clock generator
 APB3_TB_intf apb3_intf(CLK);
 APB3_device DUT(
 .PCLK(CLK),
 .PENABLE(apb3_intf.PENABLE),
 ...);
 initial begin : Test_Activity
 APB3_BFM bfm; // abstract BFM reference
 int read_data;
 bfm = apb3_intf.bfm; // reference to BFM
 bfm.write(100, 1234);
 bfm.read(100, read_data);
 if (read_data != 1234)
 $display("error: unexpected read data");
 end
endmodule

 VII. USING THIS STRUCTURE WITH VIRTUAL INTERFACES

As shown in Figure 4, the abstract BFM mechanism
makes virtual interfaces unnecessary for accessing the BFM.
However, virtual interfaces may nevertheless be useful in
providing an easy way for class-based verification
components to locate the concrete BFM variable in the
interface instance.

 VIII. CLOCKING BLOCKS FOR TIMING ABSTRACTION

Within a SystemVerilog module or interface, any
collection of signals (nets or variables) may be grouped
according to the clock signal that normally controls their

updating or sampling, using the clocking block construct. A
clocking block insulates a class-based verification
environment from the nanosecond-by-nanosecond minutiae
of signal transition timing and allows the testbench to
operate in terms of clock cycles. It also relieves the testbench
of the need to understand the differences between nets and
variables at the interface to the DUT; all signals controlled
through a clocking block appear to the testbench as a special
kind of variable known as a clockvar. Tutorial review of the
clocking block mechanism may be found in [4] and [8].

Figure 5 shows the code of Figure 4 reworked to use a
clocking block in the APB3 bus interface. It is interesting to
note that the concrete BFM class definition is embedded

Figure 5: Abstract BFM class and concrete implementation in an interface using clocking block

package APB3_pkg;
 virtual class APB3_BFM;
 pure virtual task write (
 int unsigned addr, data);
 pure virtual task read (
 int unsigned addr,
 output int unsigned data);
 pure virtual task init ();
 pure virtual task idle (int unsigned cycles);
 endclass
endpackage

module APB3_TB_top;
 import APB3_pkg::*;

 bit CLK;
 always #5 CLK = ~CLK; // clock generator

 APB3_TB_intf apb3_intf(CLK);

 APB3_device DUT(
 .PCLK(CLK),
 .PENABLE(apb3_intf.PENABLE),
 ...);

 initial begin : Test_Activity
 APB3_BFM bfm; // abstract BFM reference
 int read_data;
 bfm = apb3_intf.bfm; // reference to BFM
 bfm.init;
 bfm.idle(5);
 bfm.write(100, 1234);
 bfm.read(100, read_data);
 if (read_data != 1234)
 $display("error: unexpected read data");
 bfm.idle(100); $stop;
 end
endmodule

interface APB3_TB_intf(input bit PCLK);
 import APB3_pkg::*;
 logic PENABLE, PWRITE, PSEL, PREADY;
 logic [15:0] PADDR, PWDATA, PRDATA;

 default clocking apb_ck @(posedge PCLK);
 output PENABLE, PWRITE, PSEL, PADDR, PWDATA;
 input PREADY, PRDATA;
 endclocking

 class APB3_concrete_BFM extends APB3_BFM;
 task init;
 apb_ck.PSEL <= 1'b0;
 apb_ck.PENABLE <= 1'b0;
 apb_ck.PWRITE <= 1'b0;
 endtask
 task write(int unsigned addr, data);
 ##0
 apb_ck.PSEL <= 1'b1;
 apb_ck.PENABLE <= 1'b0;
 apb_ck.PWRITE <= 1'b1;
 apb_ck.PADDR <= addr;
 apb_ck.PWDATA <= data;
 ##1
 apb_ck.PENABLE <= 1'b1;
 do ##1; while (!apb_ck.PREADY);
 apb_ck.PSEL <= 1'b0;
 apb_ck.PENABLE <= 1'b0 ;
 endtask
 task read(int unsigned addr,
 output int unsigned data);
 ##0
 apb_ck.PSEL <= 1'b1;
 apb_ck.PENABLE <= 1'b0;
 apb_ck.PWRITE <= 1'b0;
 apb_ck.PADDR <= addr;
 ##1
 apb_ck.PENABLE <= 1'b1;
 do ##1; while (!apb_ck.PREADY);
 apb_ck.PSEL <= 1'b0;
 apb_ck.PENABLE <= 1'b0 ;
 data = apb_ck.PRDATA;
 endtask
 task idle(int unsigned cycles);
 ##(cycles);
 endtask
 endclass

 APB3_concrete_BFM bfm = new;

endinterface

within the same interface that declares the clocking block,
and therefore can take advantage of the convenient ##n
notation for cycle delays that becomes available thanks to the
default clocking specification in that interface. This
makes it easy to add to the BFM a new method idle()that
simply idles the bus, with no activity, for a specified number
of clock cycles. We have also taken advantage of the ##0
feature of clocking blocks to synchronize task execution with
the clock, without unnecessarily wasting a clock cycle, as
described in[11]. This form of cycle delay causes procedural
code to wait until the next clock cycle unless simulation has
already reached exactly the moment of a clock event, in
which case ##0 does not wait. This ##0 feature is scheduled
for inclusion in the 2008 revision of the SystemVerilog
standard, but has already been implemented in at least one
commercially available simulator [12].

 IX. CONCLUSIONS

The style of interaction between testbench and DUT
illustrated in this paper offers a number of attractive features:

• Its packaging is convenient and easy to manage. The
concrete BFM and the interface or module that it
connects to are in the same design unit.

• The concrete BFM has easy access to all required
signals, while the abstract BFM provides an
appropriate level of abstraction for use by the
testbench.

• A clocking block (if used) can easily be located in
the right place, in the same module or interface as
the signals it controls. This makes coding the
concrete BFM more straightforward because it has a
default clocking in the correct scope, and it
ensures that timing concerns don't leak into OO
testbench. code

• The abstract BFM base class is a good match with
re-usable OO testbench component methodology,
and could even be applied to much more general
BFMs applicable to many variants of a bus structure
in which the same base class and API gave access to
widely different concrete BFMs. In this way, the
OOP testbench could be yet further decoupled from
details of the physical interface to the DUT.

• It is easy to fit into a transaction-level modeling
(TLM) testbench structure. The abstract BFM can

easily be given a TLM interface instead of the
procedural API outlined in this paper.

• Reuse of legacy Verilog BFM code is
straightforward. It is only necessary to add a
derived-class wrapper to the legacy BFM tasks,
which can remain packaged in a module as before.

• This scheme has low impact on published testbench
architecture methodologies, and can be retrofitted
into them without difficulty.

REFERENCES

[1] "IEEE Standard for SystemVerilog- Unified Hardware Design,
Specification, and Verification Language," IEEE Std 1800-2005,
2005

[2] "IEEE Std 1364 -2005 IEEE Standard for Verilog Hardware
Description Language," IEEE Std 1364-2005 (Revision of IEEE Std
1364-2001) , 2006

[3] Sutherland, Stuart, S. Davidman, and P. Flake, SystemVerilog for
Designers. 2nd ed. Norwell MA: Springer Inc., 2006.

[4] Spear, Chris. SystemVerilog for Verification. Norwell, MA: Springer,
Inc, 2006.

[5] Bromley, Jonathan. "Towards a Practical Design Methodology with
SystemVerilog Interfaces and Modports," Conference on Using
Hardware Design and Verification Languages, 22 Feb. 2007. San
Jose, CA, Accellera 2007

[6] Fitzpatrick, T, D. Rich, and A. Rose. AdvancedVerification
Methodology. Ed. Mark Glasser. 3rd ed. Willsonville, OR: Mentor
Graphics, 2007.

[7] Bergeron, Janick, E. Cerny, A. Hunter, and A Nightingale.
Verification Methodology Manual for SystemVerilog. Norwell, MA:
Springer, Inc, 2005.

[8] Cummings, Cliff, and A. Salz. SystemVerilog Event Regions, Race
Avoidance & Guidelines. Synopsys User Group, 21 Sept. 2006,
Synopsys. 5 Dec. 2007 http://www.sunburst-
design.com/papers/CummingsSNUG2006Boston_SystemVerilog_Ev
ents.pdf

[9] "URM Class-Based SystemVerilog Library Reference", Cadence
Design Systems Inc, San Jose, CA, October 2007

[10] AMBA3 APB Protocol v1.0 Specification, ARM Limited,
Cambridge, England, August 2004. ARM Document number
IHI0024B

[11] Bromley, J. "Synchronizing a BFM with its clock, without wasting a
clock cycle". Available at
http://www.svug.org/TipsTricks/tabid/82/Default.aspx

[12] "Questa 6.3c" tool from Mentor Graphics Inc, Beaverton, OR
[13] E. Gamma, R.Helm, R. Johnson, J. Vlissides, Design Patterns,

Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, Reading Massachusetts, 1995.

