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ABSTRACT 

 

 

 

VMM 1.2 introduces a set of features for transaction-level communication inspired by the Sys-

temC TLM-2.0 standard. At the same time, the VCS TLI has been upgraded to support the TLM-

2.0 standard. This paper, written by the author of the TLM-2.0 standard itself, explains the sig-

nificance of these new features to VMM and gives ideas on how best to exploit these features for 

communication between a SystemC reference model and a SystemVerilog test bench. 
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1 Introduction 
 

The VMM methodology provides a powerful, flexible and intuitive framework for the construc-

tion of SystemVerilog verification environments.  However, many SystemVerilog users also 

have models written in C, C++, or sometimes SystemC.  Furthermore, the emergence of the Sys-

temC TLM-1 and TLM-2.0 transaction-level modeling standards is having an impact on com-

munication styles within SystemVerilog verification environments. 

 

VMM 1.2 introduces a set of features for transaction-level communication within a VMM verifi-

cation environment inspired by the SystemC TLM-2.0 standard. The inclusion of these features 

was motivated in part by the need to connect a VMM test bench to a SystemC reference model. 

At the same time, the existing VCS TLI (Transaction-Level Interface), a means of bridging be-

tween SystemC and SystemVerilog at the transaction level, has been upgraded and refined to 

work with the TLM-2.0 standard. 

 

This paper explains the new TLM-2 features of VMM 1.2 and how they integrate with the exist-

ing communication features of VMM. We also offer practical guidance on using the VCS TLI 

with the TLM-2.0 standard to integrate C, C++ and SystemC code into an existing VMM-based 

SystemVerilog test bench. 

 

This paper will be of interest to verification engineers who have already adopted, or are planning 

to adopt, SystemVerilog as their primary verification language, and who also expect to make use 

of C/C++/SystemC code in their verification activity.  The content assumes some familiarity 

with SystemVerilog for verification, and some C/C++ programming skills, but does not require 

any prior experience in using those languages together. 

2 Overview of the TLM-2 features in VMM 1.2  

2.1 The motivation for adding TLM-2 features to VMM 
 

VMM has always used transaction-level communication for abstraction, speed and productivity.  

 

Mixed-language simulation environments involving a VMM test bench and C/C++ or SystemC 

reference models are not unusual. Virtual platform models, as used for software development 

and architectural exploration, are growing in importance, and the SystemC TLM-2.0 standard is 

being used to achieve interoperability between the components of such a virtual platform model. 

If a constrained random VMM environment is to be used with a reference model that consists of 

a virtual platform adhering to the SystemC TLM-2.0 standard, then having TLM-2.0 support 

within VMM promises to make life easier for the VMM programmer. The adoption of a common 

TLM standard across both SystemVerilog test benches and SystemC reference models makes 

good sense for everyone. 

 

Besides interoperability, the other main objective of the SystemC TLM-2.0 standard is 

simulation speed. The combination of speed and interoperability depends on the technical details 
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of the way in which transactions are passed between components. Fortunately, those technical 

details are a good fit with the way communication has always worked in VMM. In particular, 

both VMM and TLM-2.0 support the idea that each transaction has a finite lifetime with a well-

defined time-of-birth and time-of-death. 

2.2 Styles of transaction-level communication 
 

Transaction-level communication in current languages (i.e. SystemVerilog and SystemC) and 

methodologies (i.e. VMM, TLM-1, and TLM-2.0) differs along several dimensions. 

 

All of the above-mentioned methodologies represent transactions as objects passed as arguments 

to object-oriented method calls, such as put(trans) and get(trans) in the case of VMM and TLM-

1, or b_transport(trans, delay) in the case of TLM-2.0. Such method calls can either be blocking, 

meaning that the function may suspend execution and only returns when the transaction is com-

plete (in some sense), or non-blocking, meaning that the function always returns immediately, 

and indicates back to the caller whether or not the transaction is complete. All of the above-

mentioned methodologies support both blocking and non-blocking communication. 

 

Transaction objects can be passed by value or by reference. With pass-by-value semantics, re-

gardless of whether argument passing is actually implemented by taking a copy of an argument 

to a method call, the transaction object is notionally read-only and communication is unidirec-

tional; any response must be returned using a separate transaction object. TLM-1 uses pass-by-

value in this sense. With pass-by-reference, the transaction object has an existence independent 

of the method call, and hence the same transaction object can be passed through a series of 

method calls. VMM and TLM-2.0 use pass-by-reference. 

 

Communication between a producer and a consumer can be direct, or can be mediated by a 

channel. With direct communication (aka the remote procedure call), an initiator calls a method 

that is implemented by a target. Direct communication is used by TLM-1 and TLM-2.0. When 

communication is mediated by a channel, a producer and a consumer make method calls to a 

common channel that serves as a transaction buffer and allows the choice of blocking versus 

non-blocking to be made independently at producer and consumer. TLM-1 and VMM support 

communication mediated by a channel. 

 

Another difference lies in the completion model for transactions. The completion of a transaction 

can be signalled using an argument or return value of a method call, using an attribute of a trans-

action object, or can be implicit. Closely related to the completion model is the approach used to 

signal significant events during the lifetime of the transaction. VMM takes the approach of using 

event notifications embedded within the transaction object itself. TLM-2.0 takes the approach of 

using separate non-blocking method calls to mark each timing point during the lifetime of a sin-

gle transaction object. 

 

VMM provides a diverse set of communication mechanisms including channels, notifications, 

and callbacks. The primary mechanism for transaction-level communication within a VMM veri-

fication environment is the vmm_channel, which can be used to implement a true zero-length 
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queue with a blocking completion model, a finite FIFO, or an infinite FIFO with a non-blocking 

completion model. VMM 1.2 adds TLM-2.0-style direct communication using ports and exports. 

 

The vmm_channel carries transactions by reference. The lifetime of a given transaction can ex-

tend over several method calls to the channel. The concept of the “active slot” permits a transac-

tion to be inspected and modified by a consumer without being removed from the channel; the 

consumer is permitted to modify the state of the transaction object in order to return a response 

back to the initiator. The notifications built into each transaction (EXECUTE / STARTED / 

ENDED) permit timing points to be signalled (to the producer or consumer) during the lifetime 

of the transaction. Additional timing points can be signalled by adding a vmm_notify in parallel 

with the vmm_channel, which is the role played by transaction phases in TLM-2.0. 

 

Even prior to VMM 1.2, the model of a transaction lifetime in VMM had aspects that reflect the 

TLM-2.0 standard: 

 

 The lifetime of a VMM transaction extends across multiple method calls, like TLM-2.0 

 Method calls can be blocking or non-blocking, like TLM-2.0 

 A VMM transaction can be modified while still in a vmm_channel, like TLM-2.0 

 VMM can explicitly signal the end of a transaction using vmm_data::ENDED, rather like the 

TLM-2.0 END_RESP phase, but it is only the subsequent call to remove() or get() that actu-

ally makes space in the channel for the next transaction. 

2.3 Overview of the new VMM 1.2 TLM base classes 
 

A full description of the VMM 1.2 TLM base classes can be found in the VMM Standard Library 

User Guide [2]. The intent of this section is not to repeat the information found in the User 

Guide, but rather to give an overview of the more significant features and their intended use. 

2.3.1 The transport interfaces 
 

TLM-2 communication in VMM 1.2 uses the blocking and non-blocking transport interfaces, 

which are used to communicate between an initiator and a target. The initiator would typically be 

a VMM transactor that produces transactions, and the target a transactor that consumes transac-

tions. The blocking transport interface consists of a single method b_transport called in the for-

ward direction from initiator to target, where the entire transaction is completed in a single 

method call.  

 

port.b_transport( tx, delay );  // Called from initiator on forward path 

 

The value of the delay argument is added to the current simulation time to determine the time at 

which the transaction should be processed at the target. The transaction itself is passed by refer-

ence (the argument is a SystemVerilog object handle), and remains valid only until the return 

from the b_transport method call, after which the initiator is free to re-use the transaction object 

for some other purpose. The “b_” in the method name stands for “blocking”, meaning that the 

body of the method may suspend by executing a SystemVerilog event control and only return to 

the caller at a later simulation time.  
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The non-blocking transport interface consists of a pair of methods nb_transport_fw and 

nb_transport_bw, called in the forward and backward directions respectively, where the progress 

of a single transaction may be described using multiple calls to these two methods. In the de-

scription below, the term nb_transport is used to indicate either nb_transport_fw or 

nb_transport_bw. 

 

vmm_tlm::sync_e   status; 

vmm_tlm::phase_e  phase; 

status = port.nb_transport_fw( tx, phase, delay);     // Called from initiator on forward path 

 

status = export.nb_transport_bw( tx, phase, delay);  // Called from target on backward path 

 

The status and phase variables use the following type definitions: 

 

class vmm_tlm; 

typedef  enum 

{ TLM_REFUSED, TLM_ACCEPTED, TLM_UPDATED, TLM_COMPLETED } 

sync_e; 

typedef  enum 

{ BEGIN_REQ, END_REQ, BEGIN_RESP, END_RESP } 

 phase_e; 

  ... 

endclass: vmm_tlm 

 

The advantage of the blocking transport interface is its simplicity; the transaction always com-

pletes in a single method call. With the non-blocking transport interface, significant timing 

points during the lifetime of a transaction (e.g. the start of the response phase) are indicated by 

calling nb_transport in either the forward or backward direction, the specific timing point being 

identified using the phase argument. Protocol-specific rules for reading or writing the attributes 

of a transaction object can be expressed relative to the phase. The four phases BEGIN_REQ, 

END_REQ, BEGIN_RESP, and END_RESP belong to the so-called base protocol, which is 

described in more detail below. The phase can be used for flow control, and for that reason may 

have a different value at each hop taken by a transaction (where the same transaction is passed 

through multiple transactors); the phase is not an attribute of the transaction object. 

 

A call to nb_transport always represents a phase transition, whereas the return from nb_transport 

may or may not do so, as indicated by the status value; TLM_UPDATED means the return 

represents a phase transition, TLM_ACCEPTED means it does not (so that transaction and phase 

arguments should be ignored), and TLM_COMPLETED is a shortcut meaning that the transac-

tion is complete (that is, has jumped to the final phase). Alternatively, the completion of the 

transaction can be indicated by making an explicit transition to the final phase. 

 

By design, the transaction object itself does not contain any timing information or events. Delays 

are passed as arguments to b_transport/nb_transport. On the other hand, a transaction object 
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would typically include a response status field that carries protocol-specific information about 

the success or failure of the transaction. 

 

The point of using the transport interfaces in VMM is to provide a simple, uniform way of pass-

ing transaction objects between transactors with well-defined semantics for transaction comple-

tion and for describing timing points. Also, having the transport interfaces common between 

VMM and SystemC provides a natural starting point for cross-language working. 

2.3.2 Ports and exports 
 

When two or more VMM transactors communicate using the transport interfaces, they do so us-

ing the VMM TLM ports and exports. The purpose of ports and exports is to provide a structured 

way of making method calls between VMM transactors (or SystemC modules) such that the de-

pendencies between each transactor and its environment can be minimized. To call a transport 

method, the code within the producer only need refer to the port and has no direct dependencies 

on any code outside that transactor. Similarly, to call a transport method implemented within a 

consumer, the environment only need refer to the export, and has no other direct dependencies. It 

is only when the port and export are connected within the connect_ph method of the environment 

that a specific dependency is established between the producer and consumer transactors. 

 

VMM provides ports and exports dedicated to the blocking and non-blocking transport inter-

faces. As per the TLM-2.0 standard, VMM also provides so-called sockets that combine both 

transport interfaces in a single object (described later). 

 

class  producer  extends  vmm_xactor; 

vmm_tlm_b_transport_port #(producer, my_tx)  m_port; 

my_tx  tx; 

... 

m_port.b_transport(tx, delay); 

... 

 

class  consumer  extends  vmm_xactor; 

vmm_tlm_b_transport_export #(consumer, my_tx)  m_export; 

 

task  b_transport(int id = -1, my_tx trans, ref int delay); 

... 

 

class  my_env  extends  vmm_group; 

producer  m_producer; 

consumer  m_consumer; 

 

virtual  function  void  connect_ph; 

m_producer.m_port.tlm_bind( m_consumer.m_export ); 

endfunction 

... 
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In the above code, the producer is calling b_transport through a port, the consumer is providing  

an implementation of b_transport using an export, and the top-level environment is connecting 

(or “binding”) the port to the export. The tlm_bind method is creating the link between the port 

and the export such that when the producer calls b_transport, it is the implementation of 

b_transport within the consumer that actually gets called.  

 

Each port and export is an object that must be constructed explicitly (the calls to new are not ac-

tually shown in the example above). Both the port and the export declarations are parameterized 

with the type of the transactor (producer/consumer) and the type of the transaction (my_tx). You 

may notice that the implementation of b_transport has an extra int id argument. This so-called 

peer id can be used to distinguish between transactions arriving from different producers.  

 

In addition to the tlm_bind method shown above, VMM also provides a tlm_unbind method to 

remove an existing connection and a tlm_import method for binding a port or export on a child 

transactor to a port or export on a parent transactor, respectively. Note that this child-to-parent 

binding can only be performed by calling tlm_import, and not by calling tlm_bind, which can 

only be used for peer-to-peer binding. 

 

VMM also provides a family of methods for determining the existing bindings of a port or ex-

port, namely get_n_peers, get_peers, get_peer, get_peer_id, check_bindings, print_bindings and 

report_unbound. The details can be found in the User Guide [2] 

2.3.3 Peer ids 
 

Peer ids permit a VMM consumer to distinguish between incoming transactions arriving from 

multiple producers, as illustrated by the following example: 

 

class  producer  extends  vmm_xactor; 

vmm_tlm_b_transport_port #(producer, my_tx) m _port; 

... 

m_port.b_transport(tx, delay); 

... 

 

class  consumer  extends  vmm_xactor; 

vmm_tlm_b_transport_export #(consumer, my_tx) m_export; 

 

function  new (string inst, vmm_object parent = null); 

super.new(...); 

m_export = new(this, "m_export", 2);     // 3rd argument = max # bindings 

endfunction 

 

task  b_transport(int id = -1, my_tx trans, ref int delay); 

... 

 

class  my_env  extends  vmm_group; 

producer  m_producer_1; 
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producer  m_producer_2; 

consumer  m_consumer; 

virtual  function  void  connect_ph; 

m_producer_1.m_port.tlm_bind( m_consumer.m_export, 0 );  // 2nd argument = id 

m_producer_2.m_port.tlm_bind( m_consumer.m_export, 1 );  // 2nd argument = id 

endfunction 

... 

 

The first thing to notice is the connect_ph method of the environment, which binds two separate 

ports to the same export. The tlm_bind method takes a second argument, the peer id, which al-

lows transactions from the two ports to be distinguished. 

 

The second thing to notice is that when the export is instantiated, the constructor new takes a 

third argument that specifies the maximum number of bindings to this export. The default value 

of 1 would be inadequate in this case, since the export is bound twice. 

 

Finally, the first argument to the b_transport method implemented in the consumer is the peer id 

passed to the tlm_bind method. The implementation of b_transport can now use the peer id to 

distinguish between transactions from the two producers. 

 

As an alternative to peer ids, for every relevant type of port, export and socket VMM provides a 

shorthand macro that allows multiple ports/exports/sockets with the same transaction type to co-

exist within the same transactor, as illustrated by the following example: 

 

class  consumer  extends  vmm_xactor; 

`vmm_tlm_b_transport_export(_1)  // Argument is suffix to name 

`vmm_tlm_b_transport_export(_2)   

vmm_tlm_b_transport_export_1 #(consumer, my_tx)  m_export_1; 

vmm_tlm_b_transport_export_2 #(consumer, my_tx)  m_export_2; 

 

task  b_transport_1(int id = -1, my_tx trans, ref int delay); 

... 

task  b_transport_2(int id = -1, my_tx trans, ref int delay); 

... 

 

The argument passed to the macro is used as the suffix for a new type name and a new method 

name. Those new types are then used to create two separate exports, and the consumer contains 

two separate and differently named implementations of the b_transport method, one for each 

export. It is good practice to use the same suffix when naming the export members themselves 

(e.g. m_export_1), though this is not strictly necessary. Since peer ids are not being used, the id 

argument to b_transport will have the value 0 for both methods. 

2.3.4 Analysis ports and exports 
 

Analysis ports and exports are a variant on the TLM ports and exports discussed above. The 

main difference between analysis ports and regular ports is that a single analysis port can be 
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bound to multiple analysis exports, in which case the same transaction is “broadcast” to each and 

every export or “observer” connected to the analysis port. 

 

Analysis ports provide a mechanism for distributing transactions to passive components in a 

verification environment, such as checkers and scoreboards, and as such they provide an alterna-

tive to VMM callbacks for the situation where the transaction does not need to be modified by 

the observer. The User Guide [1] actually recommends the use of analysis ports rather than call-

backs or vmm_notify when distributing transactions that do not need to be modified. Callbacks 

should still be used where the transaction does need to modified, and vmm_notify should still be 

used for broadcasting data-less synchronization events. 

 

The following example shows an analysis port: 

 

class  my_tx  extends  vmm_data;   // User-defined transaction class 

... 

 

class  transactor  extends  vmm_xactor; 

vmm_tlm_analysis_port #(transactor, my_tx)  m_ap;    // The analysis port 

... 

virtual task main; 

my_tx  tx; 

... 

m_ap.write(tx);     // Broadcast transaction to all observers 

... 

 

The transactor above sends a transaction tx out through an analysis port m_ap. The type of the 

analysis port is parameterized with the type of the transactor and of the transaction my_tx. The 

call to write sends the transaction to any object that has registered itself with the analysis port. 

There could be zero, one, or many such observers registered with the analysis port.  

 

To continue the example, let us look at one observer: 

 

class  observer  extends  vmm_object;  

vmm_tlm_analysis_export  #(observer,  my_tx)  m_export; 

 

function  new  (string inst,  vmm_object  parent = null); 

... 

m_export = new(this, "m_export");  // Every port and export needs to be constructed 

... 

function  void  write( int  id,  my_tx  tx ); 

... 

 

The observer has an instance of an analysis export and must implement the write method that the 

export will provide to the transactors. Note that the observer extends vmm_object. Since an ob-

server is passive, it need not extend vmm_xactor. 
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The analysis port may be bound to any number of observers in the surrounding environment, as 

shown in the following example: 

 

class  tb_env  extends  vmm_group; 

transactor    m_transactor; 

observer       m_observer_1; 

another        m_observer_2; 

yet_another  m_observer_3; 

 

virtual  function  void  build_ph; 

m_transactor = new( "m_transactor", this ); 

m_observer   = new( "m_observer",   this ); 

endfunction 

 

virtual  function  void  connect_ph;    

m_transactor.m_ap.tlm_bind( m_observer_1.m_export ); 

m_transactor.m_ap.tlm_bind( m_observer_2.m_export ); 

m_transactor.m_ap.tlm_bind( m_observer_3.m_export ); 

... 

2.3.5 Sockets 
 

As mentioned above, a socket combines multiple ports and exports into a single object so that 

calls to b_transport, nb_transport_fw and nb_transport_bw can be made through a single pair of 

sockets, one initiator socket and one target socket, as follows: 

 

class  producer  extends  vmm_xactor; 

vmm_tlm_initiator_socket  #(producer,  my_tx)  m_socket; 

  … 

  m_socket.b_transport(tx, delay);   // Call through socket 

  … 

  status = m_socket.nb_transport_fw(tx, phase, delay);  // Call through socket 

  … 

  virtual  function  vmm_tlm::sync_e  nb_transport_bw( 

int id=-1,  my_tx  trans,  ref  vmm_tlm::phase_e  ph,  ref int delay); 

… 

 

 class  consumer  extends  vmm_xactor; 

  vmm_tlm_target_socket  #(consumer,  my_tx)  m_socket; 

  … 

  status = m_socket.nb_transport_bw(tx, phase, delay);  // Call through socket 

  … 

  task  b_transport(int id = -1,  my_tx  trans, ref int delay); 

   … 

  virtual  function  vmm_tlm::sync_e nb_transport_fw( 

int id=-1,  my_tx  trans,  ref vmm_tlm::phase_e ph,  ref int delay); 
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… 

 

In the above code, note that the producer, which instantiates the initiator socket, must implement 

nb_transport_bw, and the consumer, which instantiates the target socket, must implement both 

b_transport and nb_transport_fw. Also note that the code above just shows the raw method calls; 

actual working code must make transport calls according to the rules of some protocol, and an 

initiator should not mix calls to b_transport and nb_transport_fw in a fine-grained manner. 

 

The initiator socket must be bound to the target socket with a single call to tlm_bind at the top 

level, as shown below: 

 

class  my_env  extends  vmm_group; 

producer   m_producer; 

consumer  m_consumer; 

virtual  function  void  connect_ph; 

m_producer.m_socket.tlm_bind( m_consumer.m_socket ); 

endfunction 

... 

2.3.6 Generic payload 
 

The TLM-2.0 standard defines a generic payload and a base protocol to enhance interoperability 

for models with a memory-mapped bus interface. Although it is possible to use the transport in-

terfaces described above with user-defined transaction types and protocols, for the sake of inter-

operability TLM-2.0 strongly recommends either using the base protocol off-the-shelf or creating 

models of specific protocols using the generic payload and base protocol as a starting point, then 

adding user-defined extensions as needed. The generic payload provides an extension mecha-

nism for this purpose. All of these TLM-2.0 features are available in VMM 1.2. 

 

In the world of virtual platform modeling, TLM-2.0 interfaces fall into one of two categories. 

Models that need to communicate by reading or writing a block of bytes at a certain address 

without regard for the fine details of the protocol will use the plain, unextended generic payload, 

and thus achieve a high degree of off-the-shelf interoperability. On the other hand, models that 

need to be concerned with the fine details of a specific protocol, perhaps because they require a 

high degree of timing accuracy, will need to extend the generic payload and phases, and by so 

doing will sacrifice interoperability with the base protocol. 

 

The generic payload contains a set of attributes that are typical of memory-mapped busses. The 

details can be found in the OSCI TLM-2.0 LRM [4]. In VMM 1.2 a generic payload transaction 

can be created and transported as follows: 

 

vmm_tlm_b_transport_port #(initiator, vmm_tlm_generic_payload)  m_port; 

… 

begin 

vmm_tlm_generic_payload  tx;  

int delay; 
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assert( randomized_tx.randomize() with {  

m_command == vmm_tlm_generic_payload::TLM_WRITE_COMMAND; 

m_address >= 0 && m_address < 256;  

m_length == 4 || m_length == 8;  

m_data.size == m_length;          // Trick to randomize dynamic array 

m_byte_enable_length <= m_length; 

(m_byte_enable_length % 4) == 0; 

m_byte_enable.size == m_byte_enable_length; 

m_streaming_width == m_length;  

} ) 

else `vmm_error(log, "tx.randomize() failed"); 

 

$cast(tx, randomized_tx.copy()); 

m_port.b_transport(tx, delay); 

assert( tx.m_response_status == vmm_tlm_generic_payload::TLM_OK_RESPONSE ); 

end 

 

A generic payload transaction has 10 attributes, the most important being the command, address, 

data array, data length, and response status. Other attributes include byte enables, streaming 

width, and extensions. There are two particular points to note from the example above; firstly, all 

attributes are set (or constrained to sensible values) before sending the transaction through the 

transport interface, and secondly, the response status is checked on return from b_transport. As a 

practical point, the byte enable length should be set to 0 if byte enables are not used, and the 

streaming width should be set equal to the data length (m_length) if streaming mode is not used. 

 

The target should inspect and execute the incoming generic payload transaction as follows: 

 

vmm_tlm_b_transport_export #(target, vmm_tlm_generic_payload)  m_export; 

… 

task  b_transport(int id = -1,  vmm_tlm_generic_payload  trans,  ref int  delay); 

vmm_tlm_generic_payload::tlm_command   cmd = trans.m_command; 

longint             adr = trans.m_address; 

int unsigned    len = trans.m_length; 

int unsigned    bel = trans.m_byte_enable_length; 

int unsigned   wid = trans.m_streaming_width; 

 

// Check whether the attribute values are supported by this target 

if (adr + len >= SIZE) begin 

trans.m_response_status = 

vmm_tlm_generic_payload::TLM_ADDRESS_ERROR_RESPONSE; 

return; 

end 

if (wid < len) begin 

trans.m_response_status =  

vmm_tlm_generic_payload::TLM_BURST_ERROR_RESPONSE; 
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return; 

end 

if (cmd == vmm_tlm_generic_payload::TLM_READ_COMMAND) 

for (int unsigned i = 0; i < len; i++) begin 

`define REM(a, b) ((a)-(((a)/(b))*(b))) 

if ( bel == 0 || trans.m_byte_enable[ `REM(i, bel) ] ) 

trans.m_data[i] = mem[adr + i]; 

end 

else if (cmd == vmm_tlm_generic_payload::TLM_WRITE_COMMAND) 

for (int unsigned i = 0; i < len; i++) begin 

`define REM(a, b) ((a)-(((a)/(b))*(b))) 

if ( bel == 0 || trans.m_byte_enable[ `REM(i, bel) ] ) 

mem[adr + i] = trans.m_data[i]; 

end 

#10; 

trans.m_response_status = vmm_tlm_generic_payload::TLM_OK_RESPONSE; 

endtask : b_transport 

 

There are several important points to note from the example above. Firstly, the command, ad-

dress, data length, byte enable length, and streaming width attributes must all be checked to en-

sure that the transaction is valid for this particular target; otherwise, the target must set an error 

response in the transaction before returning. Secondly, this particular target is able to execute 

either a read or a write command with support for byte enables, where the byte enable array 

length is permitted to be less than the data array length (in which case access to the byte enable 

array wraps around using REM, a macro to calculate remainder on division). Finally, if the target 

is able to execute the transaction successfully, it must set the response status to OK before re-

turning.  

2.4 The relationship between VMM TLM and the SystemC TLM-2.0 standard 
 

Although the implementation of TLM in VMM 1.2 is inspired by the SystemC TLM-2.0 stan-

dard, there are significant differences between the C++ and SystemVerilog languages that pre-

vent it being a literal translation. Also, differences between the typical use cases for VMM and 

SystemC mean that some differences between the TLM-2.0 implementations would be desirable 

anyway. For anyone who is interested in both SystemVerilog and SystemC, this section high-

lights places where the VMM 1.2 implementation differs from the SystemC TLM-2.0 standard. 

 

VMM only implements the transport interfaces, not the TLM-2.0 direct memory or debug trans-

port interfaces. Although the direct memory and debug transport interfaces are useful in the con-

text of a virtual platform model written in C++, they do not make much sense when exercising 

such a model from a SystemVerilog test bench. 

 

In VMM, the nb_transport method adds a new return value TLM_REFUSED, which allows the 

implementation of the method to reject the transaction. In TLM-2.0 there is no ability to refuse a 

transaction at the API level; such an ability must be modeled using attributes of the transaction 

object. 
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The lack of multiple inheritance in SystemVerilog makes certain things harder to express. In 

particular, the hierarchical SystemC interface structure cannot be reproduced exactly. Unlike 

SystemC, VMM makes use of separate port and export types for each kind of transport interface 

(blocking and non-blocking). Like SystemC, VMM combines all of the transport interfaces into a 

pair of initiator and target sockets to simplify binding. Unlike SystemC, the VMM sockets are 

parameterized on the transaction and phase types separately, rather than using a single protocol 

traits class. 

 

Language differences between C++ and SystemVerilog force a different approach to tagged 

sockets, i.e. allowing multiple instances of the same socket type within the same component, and 

to multi-ports and multi-sockets, i.e. binding multiple initiators to a single target and vice-versa. 

VMM achieves very similar results to TLM-2.0 using the peer id and shorthand macros (both 

described above). 

  

TLM-2.0 handles conversion between blocking and non-blocking transport calls automatically 

using the simple target socket, which provides both blocking and non-blocking transport meth-

ods, only one of which actually needs to be implemented within the target. VMM does not pro-

vide this kind of automatic adaption, but achieves a similar result using the vmm_connect utility, 

which must be called explicitly in order to bind ports and exports of different interface types. For 

example: 

 

vmm_connect #(.D(vmm_tlm_generic_payload))::tlm_transport_interconnect( 

m_initiator.m_b_port,    // Blocking transport port on initiator 

m_target.m_nb_export,  // Non-blocking transport export on target 

vmm_tlm::TLM_NONBLOCKING_EXPORT); 

 

Unlike TLM-2.0, the vmm_tlm_generic_payload class does not define any get/set access meth-

ods. Instead, the generic payload data members are public and are declared as rand. This makes 

sense in the context of constrained random transaction generation; the VMM generic payload 

includes a set of default constraints to generate transactions with reasonable attribute values. (In 

contrast, the SystemC TLM-2.0 standard was developed with deterministic execution in mind, 

i.e. running system software.) Also, the VMM generic payload extends vmm_data, as would be 

the case for any other VMM transaction type, and makes use of the VMM field automation mac-

ros to define methods for copying, comparing, and printing transactions.  

 

Unlike C++, SystemVerilog does not support pointers.  Objects are uniformly accessed by refer-

ence, and SystemVerilog provides automatic garbage collection. Because of these language dif-

ferences, the VMM generic payload does not provide methods for explicit memory management 

(i.e. acquire, release, reset). 

 

Unlike C++, where the data and byte enable array attributes are pointers, in SystemVerilog they 

are dynamic arrays. This makes the transaction data part of the transaction object itself, which is 

a difference in philosophy with TLM-2.0. 
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VMM supports generic payload extensions. However, because SystemVerilog has no support for 

function templates, extensions have to be accessed by passing the extension ID as an argument to 

the set/get/clear_extension methods. 

3 How to use TLM-2-style communication in VMM 1.2 

3.1 Communication options in VMM 1.2 
 

VMM 1.2 provides an array of options for communication: the channel (vmm_channel), the noti-

fication service (vmm_notify), callbacks (`vmm_callback), and now the blocking and non-

blocking transport ports and analysis ports inspired by the TLM-2.0 standard. The User Guide 

[2] describes each of these in detail and provides a set of guidelines for when to use each of these 

options, which are summarized here: 

 

 vmm_tlm_b_transport_port is preferred for master-like transactors that generate transac-

tions to be consumed by other transactors. The benefit of blocking transport is that the com-

pletion model is very well-defined and is unrelated to the specific details of the transaction 

object, making it robust and easy-to-understand. Simply put, b_transport does not return until 

the transaction is complete. 

 

 vmm_channel is preferred for slave-like transactors that consume transactions generated 

elsewhere. The vmm_channel provides maximum flexibility when writing this kind of trans-

actor, because it can be connected to any kind of producer (i.e. one that uses ports or channels, 

or that makes blocking or non-blocking calls). Moreover, the vmm_channel gives the ability 

for the consumer to process the transaction while it remains in the active slot of the channel, 

to buffer multiple transactions, and to idle while waiting for the next transaction to become 

available. 

 

 vmm_tlm_analysis_port is preferred for generating transactions sent to passive objects such 

as scoreboards and coverage collectors that do not need to modify the transaction object. 

Analysis ports have the benefit that they can broadcast transactions to any number of observ-

ers, and guarantee that the observers will not interfere with each other by modifying the trans-

action. 

 

 vmm_callback is preferred when modifying transactions for the purpose of overriding the 

behavior of a transactor for a specific test case. Callbacks offer two significant advantages 

when compared to analysis ports in this scenario: firstly, and essentially, they permit the 

transaction object to be modified, and secondly they give control over the order in which mul-

tiple callbacks are made. 

 

 vmm_notify is preferred for synchronization between transactors in the case where there is no 

data passed along with the synchronization. Exceptionally, vmm_notify may be used in paral-

lel with vmm_channel when multiple synchronization events are to be associated with a trans-

action. 
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The non-blocking transport interface is not preferred in native VMM environments, but is pro-

vided for compatibility with the TLM-2.0 standard and for communication with SystemC mod-

els. 

3.2 Analysis ports versus callbacks 
 

In order to understand the consequences of choosing an analysis port versus a callback, consider 

the following example: 

 

 m_ap.write(tx); 

 

versus 

 

`vmm_callback(callback_facade, write(tx)); 

 

The effect is very similar, but there are differences. Unlike VMM callbacks, the name of the 

method called through an analysis port is fixed at write. A VMM callback method is permitted to 

modify the transaction object, whereas a transaction sent through an analysis port cannot be 

modified. When multiple callbacks are registered, the prepend_callback and append_callback 

methods allow you to determine the order in which the callbacks are made, whereas you have no 

control over the order in which write is called for multiple observers bound to an analysis port. 

Because of these differences, only VMM callbacks are appropriate for modifying the behavior of 

transactors. Analysis ports are only appropriate for sending transactions to passive components 

that will not attempt to modify the transaction object. On the other hand, that in itself is the fea-

ture and strength of analysis ports; they are only for analysis. 

 

It can make sense to combine a VMM callback with an analysis port in the same transactor, us-

ing the callback to inject an error and the analysis port to send the modified transaction to a 

scoreboard, for example: 

 

`vmm_callback(callback_facade, inject_error(tx)); 

m_ap.write(tx); 

 

In this situation, the VMM recommendation is to make the analysis call after the callback, as 

shown above. 

3.3 Example using blocking transport, analysis port, callback, and vmm_channel 
 

Here we show a more extensive example of using a blocking transport port in a producer to-

gether with a vmm_channel in a consumer, as recommended above. In this example, the generic 

payload is replaced by a user-defined transaction type: 

 

class  my_tx  extends  vmm_data; 

rand  int  addr;                                                  // All protocol properties are rand and public 

rand  int  data; 

  constraint c_addr { addr >= 0; addr < 256; } // Default constraints with sensible values  
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constraint c_data { data >= 0; data < 256; } 

`vmm_typename(my_tx)                                    // Automation macros... 

`vmm_class_factory(my_tx) 

  `vmm_data_member_begin(my_tx) 

`vmm_data_member_scalar(addr, DO_ALL) 

`vmm_data_member_scalar(data, DO_ALL) 

`vmm_data_member_end(my_tx) 

endclass: my_tx 

 

typedef  vmm_channel_typed #(my_tx)  my_channel; 

 

The producer sends transactions using several different mechanisms simultaneously for different 

purposes: through a blocking transport port to some downstream transactor, through an analysis 

port for monitoring, and through callbacks to allow modifications specific to particular test cases: 

 

class my_gen extends vmm_xactor; 

  vmm_tlm_b_transport_port  #(my_gen,  my_tx)  m_port; 

vmm_tlm_analysis_port        #(my_gen,  my_tx)  m_ap; 

 

  virtual  function  void  build_ph; 

   m_port = new(this, "m_port");   // Construct transport port object 

   m_ap   = new(this, "m_ap");      // Construct analysis port object 

endfunction:  build_ph 

... 

virtual  task  main; 

 super.main(); 

 repeat(10) 

begin: loop  

my_tx   tx;  

int        delay; 

assert( randomized_tx.randomize() ) 

else `vmm_error(log, "tx.randomize() failed"); 

$cast(tx, randomized_tx.copy()); 

 

// Insert callbacks at all significant points in the transactor 

`vmm_callback(my_gen_callbacks,  pre_trans(this, tx));   

 

m_port.b_transport(tx, delay);           // b_transport call for master-like transactor 

 

`vmm_callback(my_gen_callbacks,  post_trans(this, tx)); 

m_ap.write(tx);                                   // Send tx through analysis port after callback 

end  

   ... 
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There is no obligation either to connect the analysis port or to register any callbacks, but includ-

ing these calls in the transactor provides the user with the flexibility to make use of the features 

later if needed. 

 

The consumer receives incoming transactions through a vmm_channel. The channel acts as a 

buffer between producer and consumer, with the producer putting transactions into the tail of the 

channel and the consumer getting transactions from the head of the channel. The channel delib-

erately isolates the consumer from the details of the producer, such as whether the producer 

makes blocking or non-blocking calls (it could do either or both), or whether the producer uses a 

VMM TLM port or a vmm_channel (again, it could do either): 

 

class  my_bfm  extends  vmm_xactor; 

  my_channel   m_chan;    // Reference to input channel instantiated in the environment 

  vmm_tlm_analysis_port  #(my_bfm, my_tx)  m_ap; 

  ... 

  virtual  task  main; 

super.main(); 

fork 

forever 

begin: loop 

my_tx  tx; 

`vmm_callback(my_bfm_callbacks,  pre_trans(this, tx)); 

 

// Consumer should use activate/start/complete/remove 

m_chan.activate(tx);  

m_chan.start(); 

@(i_f.bus_cb); 

i_f.bus_cb.addr1  <=  tx.addr;   // Wiggle pins using clocking block 

i_f.bus_cb.data1  <=  tx.data; 

m_chan.complete(); 

m_chan.remove();  

 

`vmm_callback(my_bfm_callbacks,  post_trans(this, tx)); 

m_ap.write(tx);                        // Send tx through analysis port after callback 

end 

join_none 

... 

 

Note that the consumer is making use of the active slot in the vmm_channel by allowing the 

transaction to remain in the channel while it is being processed, only removing the transaction 

from the channel when it is complete. The consumer could update fields in the transaction object 

if desired, such as the response status attribute of the generic payload. Also note that the con-

sumer, like the producer, makes use of callbacks and an analysis port. 

 

The top-level env instantiates the producer and consumer transactors and binds the transport port 

to the vmm_channel using the connect utility: 
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class  tb_env  extends  vmm_group; 

my_gen        m_gen;                                // Producer 

my_bfm        m_bfm;                               // Consumer 

my_channel  m_tx_chan;                        // Consumer input channel 

... 

virtual  function  void  build_ph; 

m_tx_chan  = new( "my_channel", "m_tx_chan" ); 

m_tx_chan.reconfigure(1);                  // Input channel given full-level = 1 

m_gen        = new( "m_gen", this );    // Construct transactor objects 

m_bfm        = new( "m_bfm", this ); 

endfunction: build_ph 

 

function  void  connect_ph(); 

 // Bind blocking transport port to vmm_channel 

vmm_connect #(.D(my_tx))::tlm_bind( m_tx_chan,  m_gen.m_port, 

                vmm_tlm::TLM_BLOCKING_EXPORT ); 

 

// Recommended to connect channel in consumer from connect_ph of parent 

m_bfm.m_chan = m_tx_chan; 

 

// Register channel with vmm_consensus to stop test when channel is empty 

vote.register_channel(m_tx_chan);           

endfunction:connect_ph 

endclass: tb_env 

 

There are two key points to note in the above. Firstly, the channel is reconfigured to have a full 

level of 1. This ensures that the blocking transport call does indeed block. If the full level were 

greater than 1, the first call to b_transport will return immediately before the transaction had 

completed, which would contradict the semantics of the blocking transport interface. As things 

stand, the implementation of b_transport within the vmm_channel will not return until the trans-

action has been removed from the channel by the consumer. Setting the full level of the channel 

to 1 ensures that it behaves as a zero-length queue (aka rendezvous). Note that even when the 

consumer removes the transaction from the channel, the transaction object itself remains in exis-

tence, and indeed, b_transport must subsequently return a reference to the transaction object back 

to the producer. 

 

Secondly, the vmm_connect utility is used within the connect_ph method to bind the blocking 

transport port to the vmm_channel. This connect utility must be used when binding VMM TLM 

objects to channels, and can also used in order to bind TLM ports and exports of differing inter-

face types (e.g. a blocking port to a non-blocking export). The third argument to the tlm_bind 

method indicates that the connection is being made from the port in the producer to a blocking 

export within the channel. 
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4 Connecting a VMM test bench to a SystemC reference model  

4.1 Dealing with timing differences between test bench and reference model 
 

A SystemVerilog VMM test bench typically exercises an RTL model of a Design-Under-Test 

(DUT) by pin wiggling, that is, by making low level assignments to individual Verilog wires 

with more-or-less precise timing (the timing could be accurate to the picosecond or merely 

clock-cycle-accurate). The pin wiggling is usually encapsulated within driver and monitor 

components that communicate with the rest of the test bench using transactions. In VMM this is 

termed the command layer, in which transactions are simple and atomic. These atomic 

transactions are generated from higher layers of the test bench which combine these atomic 

transactions into more complex higher-level transactions according to the details of the interface 

or protocol being modeled. 

 

Transactions may be sent to a so-called scoreboard which checks for functional correctness. It is 

within the scoreboard that a test bench may need to invoke a reference model to calculate the 

expected values of the DUT or to analyze the actual values generated by the DUT. The 

scoreboard is typically expected to receive both stimulus sent to the DUT and the actual response 

from the DUT transaction-by-transaction at some appropriate abstraction level. 

 

It is increasingly the case that SystemC models conform to the OSCI TLM-2.0 standard. 

However, a C/C++ reference model may not be structured to receive transactions one-by-one. 

Rather, the programming interface to the reference model may consist of a single function call 

that carries with it an entire dataset, or the dataset may be read from an external file. Thus it may 

be necessary for the scoreboard to collect a set of incoming transaction and then pass them to the 

reference model for batch processing. Theoretically this buffering could occur on the 

SystemVerilog or the C/C++ side, depending on the ease with which transaction can be passed 

between the two languages. Because most facilities for passing data and control between 

languages have limitations  (i.e. the SystemVerilog DPI and the VCS TLI), the most practical 

approach can be to pass simple, standard transactions across the language boundary and do any 

necessary buffering on the C/C++ side. 

4.2 How to use the VCS TLI (Transaction-Level Interface) 

4.2.1 Overview of the TLI 
 

The VCS TLI (Transaction-Level Interface) is an off-the-shelf mechanism for transaction-level 

communication between SystemVerilog and SystemC. The motivation for the TLI is to provide 

standard transaction-level communication between a SystemVerilog test bench and a SystemC 

model. In principle, this can be achieved using the SystemVerilog Direct Programming Interface 

(DPI), as described in [5]. However, the DPI has no native support for SystemC interface method 

calls or for VMM channels, so using the DPI to call SystemC methods from VMM is non-trivial. 

 

The latest release of the TLI from Synopsys has explicit support for VMM 1.2 and for the Sys-

temC TLM-2.0 standard, making it easy to integrate the TLM features of VMM described in this 
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paper with a SystemC TLM-2.0 model. On the SystemVerilog side, the TLI supports two styles 

of communication: either VMM TLM ports/exports (transport or analysis) or vmm_channels. On 

the SystemC side, the TLI supports the standard TLM-2.0 simple sockets and analysis 

ports/interfaces with both the LT (loosely-timed) and AT (approximately-timed) coding styles. 

The TLI supports method calls in both directions, that is, either side can be the producer or the 

consumer of transactions, giving many possible permutations: 

 

 SystemVerilog blocking port, SystemC LT target 

 SystemVerilog non-blocking port, SystemC AT target 

 SystemVerilog vmm_channel, SystemC LT target 

 SystemVerilog vmm_channel, SystemC AT target 

 SystemVerilog analysis port, SystemC analysis subscriber 

 

 SystemC LT initiator, SystemVerilog blocking export 

 SystemC AT initiator, SystemVerilog non-blocking export 

 SystemC LT initiator, SystemVerilog vmm_channel 

 SystemC AT initiator, SystemVerilog vmm_channel 

 SystemC analysis port, SystemVerilog analysis subscriber 

 

At the time of writing, the TLI does not allow both blocking and non-blocking transport calls to 

be mixed through the same port or socket. 

 

In order to use the TLI, it is only necessary to add a few new import/include directives and bind 

calls on both the SystemVerilog and SystemC sides.  

 

 

Top-level Module 

 
#include “tli_sc_bindings.h” 

Top-level Env 

 
`include “tli_sv_bindings.sv” 

VMM Transactor SystemC Module 

TLM port 

vmm_channel 

simple_target_socket 

simple_target_socket 

TLM export simple_initiator_socket 

TLI Adapter 
bind(“a”) 

bind(“b”) 

bind(“c”) 

bind(“a”) 

bind(“b”) 

bind(“c”) 
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The bindings between the VMM and the SystemC ports/exports/channels/sockets are made by 

calling the appropriate methods anywhere in the SystemVerilog and SystemC source code, re-

spectively. Note that these methods are not literally named bind as shown on the diagram above; 

see the example below. As well as referring to the appropriate object instance, each bind call is 

passed a string that must uniquely identify the specific binding. The correspondence between the 

SystemVerilog and SystemC sides of the TLI adapter is established using these strings. 

4.2.2 TLI example 
 

As an example, we will show the case of making a b_transport call from SystemVerilog to Sys-

temC. All the other cases follow a similar pattern. 

 

The VMM transactor makes a b_transport call to send a transaction out through a TLM port: 

 

class  my_xactor  extends  vmm_xactor; 

vmm_tlm_b_transport_port    #(my_xactor, vmm_tlm_generic_payload, tli_phase_e) 

 m_b_port; 

  ... 

  m_b_port.b_transport(tx, delay); 

 

The top-level VMM env binds the port to the TLI adapter: 

 

`include "tli_sv_bindings.sv" 

import  vmm_tlm_binds::*; 

 

class  my_env  extends  vmm_group; 

my_xactor  m_xactor; 

function  void  connect_ph(); 

tli_tlm_bind( m_xactor.m_b_port, 

vmm_tlm::TLM_BLOCKING_EXPORT,    "sv_tlm_lt"); 

  ... 

 

On the SystemC side, the SystemC module has a simple_target_socket: 

 

struct  scmod:  sc_module 

{ 

   tlm_utils::simple_target_socket<scmod>    targ_socket_lt; 

  ... 

 targ_socket_lt.register_b_transport (this, &scmod::b_transport); 

 

Finally, the top-level SystemC module binds the target socket to the TLI adapter using the same 

identifier as the SystemVerilog side, which was “sv_tlm_lt”: 

 

#include "tli_sc_bindings.h" 

 

struct  sctop:  sc_module 
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{ 

  scmod  *m_scmod; 

  SC_CTOR(sctop) { 

   m_scmod = new scmod("m_scmod"); 

tli_tlm_bind_target   (m_scmod->targ_socket_lt, LT, "sv_tlm_lt"); 

... 

 

As shown above, the only changes to the user’s code are the include directives and the bind calls. 

The user just has to ensure that every bind is given a globally unique string id to establish the 

correspondence across the language boundary. The TLI itself is implemented by a single global 

adapter that needs to be compiled into the user’s environment using a very simple script. The 

TLI adapter is not explicitly instantiated in the user’s code. To run the code, the user needs to 

compile the TLI adapter itself and add the appropriate include paths to the VCS command line. 

This is easily accomplished by copying the examples provided by Synopsys. 

4.2.3 User-defined transactions and protocols 
 

The above example shows a generic payload transaction being passed between a VMM test 

bench and a SystemC model. It is also possible to customize the TLI adapter to pass a user-

defined transaction type, though this may require considerably more effort. In the case of non-

blocking transport and the AT coding style, the behavior of the four phases BEGIN_REQ, 

END_REQ, BEGIN_RESP, END_RESP of the base protocol is built into the TLI adapter, which 

is thus able to communicate with a SystemC model that is compliant with the TLM-2.0 base pro-

tocol. With the current TLI implementation, it is possible to pass transaction types other than 

tlm_generic_payload by writing a user-defined conversion function, but it is not possible to pass 

user-defined phases between SystemVerilog and SystemC. 

 

Another approach to passing non-standard transaction types between languages would be to use 

the SystemVerilog DPI directly, as described in [5]. 

5 Conclusions 
 

This paper has described the TLM-2 features in VMM 1.2, the relationship between these and  

the original SystemC TLM-2.0 standard, and the upgraded VCS TLI. We have explained the 

motivation for each of the new features, and the advantages and disadvantages of each approach. 

 

The new features of VMM-1.2 provide an enhanced communication model within VMM that 

makes it easier to integrate SystemC reference models. The upgraded VCS TLI simplifies the 

mechanics of passing transactions across the language boundary between SystemC and System-

Verilog. 

 

Both TLM-2-within-VMM and the VCS TLI have a place when integrating a SystemC reference 

model into a VMM test bench, depending on the SystemVerilog coding style adopted. Further-

more, the introduction of transaction-level communication into VMM makes the problem of in-

tegrating verification components developed using different methodologies more tractable. 
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