
Copyright © 2006 by Doulos Ltd

Here's Exactly What You Can Do with the New SystemC Standard!
John Aynsley, Doulos, Ringwood, UK.

email: john.aynsley@doulos.com

Abstract

This paper, written by an author of the SystemC
Language Reference Manual, presents a unique
perspective on the changes made to the SystemC class
library during the standardization process, on the new
features added to SystemC, and on the important
clarifications of intent that resulted from this process.
The SystemC LRM draws a clear line between the
features that the class library is intended to provide to
the user, and the features that are merely artifacts of
the implementation. This information is important for
both SystemC users and tool developers.

Introduction

SystemC has been in use for over five years. During
that time is has undergone a number of changes,
culminating in the publication of the IEEE Std 1666-
2005 SystemC Language Reference Manual (LRM),
which was approved as an IEEE standard in December
2005. SystemC version 1 concentrated on hardware
and fixed-point arithmetic modeling, version 2 on the
abstraction of communication. These SystemC releases
took the form of an open source C++ class library with
accompanying informal documentation, so any
questions of definition could only be answered by
reference to the C++ source code. Standardization
required a shift of authority from the source code to the
LRM. The OSCI open-source simulator now has the
status of a proof-of-concept implementation of
SystemC as defined by the LRM. Nonetheless the
OSCI simulator remains the basis for every current full
SystemC implementation, and OSCI is committed to
keeping the proof-of-concept simulator compliant with
the IEEE standard as it evolves.

The standardization process has fixed a number of
inconsistencies within the existing class library, has
identified several features as being undesirable and
therefore deprecated, and has raised requests for new
features. By and large, these changes have been
accommodated while retaining backward compatibility
with existing SystemC code, but there are a few
exceptions where existing code will require
modification. Deprecated features will remain in the
OSCI open source simulator indefinitely, so users need
not rush to modify legacy code.

The process of shifting authority from the source code
to the LRM has forced the working group to clarify a
number of issues concerning which parts of the class
library are to be regarded as user-level features, and
which parts are mere artifacts of the implementation.
In some cases, this has resulted in the promotion of
certain artifacts to become user-level features. In a few
cases this has involved changes and enhancements that
destroy strict backward compatibility with earlier
versions.

This paper will not enumerate every change, but will
concentrate on the more interesting user-level features
and will provide use cases and examples of interest to
end users and tool developers. A more comprehensive
listing is provided as an Annex to the LRM.

Starting from the top

The SystemC class library provides a single header
file, systemc.h, for inclusion in applications. This
header file adds all of the names from the SystemC
class library to the declarative region in which it is
included, together with many other names from the C
and C++ standard libraries. This is convenient, but is
namespace pollution on a grand scale, contradicting
good software design practice and the modern C++
practice of using explicit namespaces.

The new standard addresses this issue by introducing a
new header file systemc. Although the header file
systemc.h will continue to be supported, the new
header file systemc is now preferred. This new header
file only introduces two names, sc_core and sc_dt,
each of which is the name of a C++ namespace. A
SystemC application can now be selective about which
names it chooses to use, thus avoiding collisions
between names from different header files. For
example:

#include "systemc"
using sc_core::sc_module;
using sc_core::sc_signal;
using std::cout;
using std::endl;

struct Mod: sc_module
{
 sc_signal<sc_dt::sc_logic> sig;
 ...
 cout << endl;
 ...
};

Copyright © 2006 by Doulos Ltd

Standards within standards

At the point in time when SystemC was developed, the
standard C++ library (also known as STL, the Standard
Template Library) had the reputation of being non-
portable between popular C++ compilers, and hence
the SystemC originators took the deliberate decision to
avoid STL and implement their own container classes
in SystemC. These classes included sc_string and
sc_pvector. But times move on, the standard C++
libraries now enjoy full and consistent support across
the main C++ compilers, and this fact is now
recognized in SystemC.

The new SystemC standard replaces sc_string with
std::string, sc_pvector with std::vector, and
sc_exception with std::exception. The old non-
standard classes are now deprecated. By default, the
name sc_string is undefined, but the old sc_string
class is still part of the source code under the name of
sc_string_old. All new SystemC applications should
use std::string exclusively. These changes will render
obsolete code that uses the old classes. The OSCI
simulator contains the following definitions to enable a
degree of backward compatibility:

typedef std::exception sc_exception;

namespace sc_dt {
class sc_string_old;

}

#ifdef SC_USE_SC_STRING_OLD
typedef sc_dt::sc_string_old sc_string;

#endif
#ifdef SC_USE_STD_STRING

typedef ::std::string sc_string;
#endif

An application wishing to use the deprecated type
name sc_string can define one of the two macros and
thus pick up the old or the new definition.

Allow me to elaborate

SystemC shares the concept of elaboration with VHDL
and Verilog. A basic concept in SystemC is the static
elaboration of the module hierarchy; all module
instantiation and port binding must be completed
before the end of elaboration, while the execution of
processes and the notification of events is strictly
confined to simulation. Furthermore, elaboration
strictly precedes simulation. SystemC version 2.1
added new callbacks and dynamic processes, which
muddied the waters a little. As a result, the definition
of elaboration required some clarification as SystemC
was standardized.

One clarification made in the new standard is that
SystemC is a class library, not a language. SystemC
has neither a concrete nor an abstract syntax of its own.
The semantics of elaboration depend on the order in
which objects are constructed, not on the existence of
certain C++ variables or particular class data members.
This has the practical consequence that a module or
channel instance does not need a corresponding name
in the C++ syntax, which makes the writing of a
general SystemC parser problematic.

Modules, ports, exports and primitive channels can
only be instantiated during elaboration, and ports can
only be bound during elaboration. Another clarification
made in the new standard is that the precise
mechanism for port binding is implementation-defined,
and port binding is not guaranteed to be complete until
the end of elaboration. This clarification implies that
any code that assumes a port is bound before the end of
elaboration could be non-portable or even cause a fatal
error. The end_of_elaboration() callbacks are made
just after the end of elaboration, and hence can rely on
instantiation and port binding having been completed,
but cannot instantiate further objects in the module
hierarchy or bind ports. On the other hand, the
before_end_of_elaboration() callbacks are made
before the end of elaboration (as you might infer from
the function name), so can instantiate modules or bind
ports, but cannot rely on port binding having been
completed.

A use case that arises in transaction-level modeling is
the binding of monitor ports on modules instantiated
throughout the hierarchy to a single monitor channel
instantiated at the top level. Because elaboration is
performed depth-first, bottom-up, the monitor ports
cannot be bound until the construction of the monitor
channel at the top-level has been completed, as shown
in the following example:

Monitor_channel *global_mon;

struct Component: sc_module {
 sc_port<mon_if> monitor_port;
 ...
 void before_end_of_elaboration() {
 monitor_port.bind(*global_mon);
 }
};

struct Top: sc_module
{
 SC_CTOR(Top) {
 ...
 global_mon = new Monitor_channel("mon");
 }
 ...
};

In general, the writer must assume that the monitor
channel has not yet been constructed at the point when
module Component is instantiated, so the port cannot
be bound at that point. In order to avoid unwanted

Copyright © 2006 by Doulos Ltd

dependencies between modules, port binding is
performed in the before_end_of_elaboration()
callback of module Component itself rather than at the
top level after the instantiation of the monitor.

Finding the big event

Because a SystemC implementation may defer the
completion of port binding until a later stage during
elaboration, SystemC requires the use of an event
finder when a port is added to the static sensitivity of a
process during elaboration. An event finder is a
member function of a port that serves to defer the
interface method call that retrieves an event until just
before the end of elaboration, after port binding has
been completed. Perhaps the most well-known
examples are the event finders pos() and neg() of the
class sc_in<bool>. The point is that the port will not
have been bound to a channel at the point when the
port is added to the static sensitivity of a process;
indeed, the channel may not yet have been instantiated,
so clearly the event within that channel cannot be
retrieved at this stage. The order of proceedings is:

1. Construction of the module hierarchy using a depth-
first descent through the module constructors.

2. The before_end_of_elaboration() callbacks

3. Port binding is completed

4. Event finders retrieve events from channels and
complete the building of static sensitivity

5. The end_of_elaboration() callbacks

Event finders have their limitations. For example, it is
not possible to pass an argument to an event finder
function, perhaps to select one from a number of
events. When a multiport is bound to more than one
channel instance, event finders in versions of the OSCI
simulator up to version 2.1 have the annoying feature
of only retrieving an event from the first such channel.
The new standard makes it clear that static sensitivity
should include the events from every channel instance
to which a multiport is bound.

An alternative is to bypass the event finder mechanism
by only adding events to the static sensitivity of
processes after the end of elaboration, in the
end_of_elaboration() callbacks. At this stage, event
finders are not necessary (indeed, they cannot be
called) because port binding has been completed.
Instead, interface method calls can be made to retrieve
events. The question then arises as to what use can be
made of these events after the end of elaboration, when
no further module instantiation is permitted.

The process macros SC_METHOD, SC_THREAD and
SC_CTHREAD can be invoked during elaboration.
These process macros have always been permitted in
end_of_elaboration(), and the new standard clarifies
that this is a deliberate feature rather than an accident

of the implementation. Here is an example of
bypassing the event finder mechanism:

struct M: sc_module {
 sc_port<sc_signal_in_if<int>,0> p; // Multiport

 void end_of_elaboration() { // Callback
 SC_METHOD(action);
 for (int i = 0; i < p.size(); i++)
 sensitive << p[i]->value_changed_event();
 }
 ...
};

From SystemC version 2.1 onward it is also possible
to spawn processes by calling sc_spawn() both during
elaboration and during simulation. Hence processes
created either by the process macros (also known as
unspawned processes) or spawned processes can be
made statically sensitive to events in the
end_of_elaboration() callbacks, avoiding the need to
call event finders. In the new standard, processes
created before the end of elaboration are known as
static processes, whereas those created after the end of
elaboration are known as dynamic processes.
Technically, the process macros and sc_spawn can
each create either static or dynamic processes. Static
processes must use event finders when being made
sensitive to ports, but dynamic processes cannot use
event finders when being made sensitive.

No port of call

It was a rule in all versions of SystemC up to version
2.1 that every port and every export must be bound at
least once. Unbound ports were not permitted. This
was inconvenient at best, and made it hard to create
optional ports. Consider the following example, which
attempts to workaround this limitation:

SC_MODULE(M}{
 sc_port<i_f> opt_port;
 ...
 void before_end_of_elaboration() {
 if (opt_port.size() == 0) {
 dummy = new dummy_channel();
 opt_port.bind(*dummy);
 ...

The callback before_end_of_elaboration() checks
whether the optional port has been bound. If not, it
binds the port to a local dummy channel. Although this
code fragment works in the OSCI simulator, its
behavior is strictly indeterminate because the new
standard makes clear that port binding is not actually
guaranteed complete before the end of elaboration.

The new SystemC standard provides a better solution
by introducing the port binding policy. A third
argument to the sc_port class template specifies

Copyright © 2006 by Doulos Ltd

whether the port may remain unbound at the end of
elaboration and during simulation.

sc_port<interface, max, policy>

The default policy of SC_ONE_OR_MORE_BOUND
means that the port must be bound to at least one
channel, the maximum number being given by the max
argument, and with a value of zero meaning no upper
limit. This was the old behavior. Two new policies
have been added. The policy
SC_ZERO_OR_MORE_BOUND permits the port to
remain unbound. SC_ALL_BOUND means that the
port must be bound exactly max times.

It is now possible to create an optional port as follows:

sc_port<i_f, 1, SC_ZERO_OR_MORE_BOUND> opt_port;

This port can be bound to zero or one channel, so it is
possible for the port to remain unbound during
simulation. Making an interface method call through
an unbound port is a run-time error, so it would be
safest to check the binding first:

if (opt_port.get_interface()) opt_port->IMC();

Port policies are checked independently for each port,
and are not passed from parent to child when a port is
bound to another port.

The object in question

The objects that are instantiated to form the module
hierarchy all share a common base class sc_object. As
discussed above, modules, port, exports and primitive
channels can only be instantiated during elaboration,
but other user-defined classes derived from sc_object
may be instantiated during elaboration or simulation.
This distinguishes the module hierarchy from the
object hierarchy, with user-defined sc_objects and
dynamic processes forming part of the object
hierarchy, but not the static module hierarchy.

In the new standard, new methods have been added to
class sc_object to support hierarchy traversal.
SystemC has always had features for hierarchy
traversal, but these were somewhat ad hoc and it was
not clear whether they were user-level features. There
is now a very simple but well-defined API for
navigating around the object hierarchy and discovering
the objects. The new API looks like this:

class sc_object
{
 public:
 const char* name() const;
 virtual const char* kind() const;
 ...
 virtual const

 std::vector<sc_object*>& get_child_objects() const;

 sc_object* get_parent_object() const;
};

const std::vector<sc_object*>& sc_get_top_level_objects();
sc_object* sc_find_object(const char*);

There is a strict parent-child relationship between all
the objects of the object hierarchy. Any given object
may have any number of child objects, or be childless.
Top-level objects have no parent, and every other
object has precisely one parent object so that the
hierarchy forms a number of separate trees with no
closed loops. Function sc_get_top_level_objects()
retrieves all of the top level objects, and
get_child_objects() retrieves all of the children of a
given object. With these features in the new standard,
it is now possible to traverse the entire object hierarchy
using a simple code fragment as follows:

void recursive_descent(sc_object* obj)
{
 // Insert some specific action here
 ...
 std::vector<sc_object*> children =
 obj->get_child_objects();
 for (unsigned i = 0; i < children.size(); i++)
 recursive_descent(children[i]);
}

void traverse_hierarchy()
{
 std::vector<sc_object*> tops = sc_get_top_level_objects();

 for (unsigned i = 0; i < tops.size(); i++)
 recursive_descent(tops[i]);
}

The trick is that any classes derived from sc_object
that may have children override the virtual function
get_child_objects(). This includes sc_module and the
classes associated with process instances. The default
definition of get_child_objects() in sc_object returns
an empty vector, because only modules and processes
have children.

Function sc_find_object() permits an object to be
found given its hierarchical name, and function
get_parent_object() does just what its name would
suggest.

Having retrieved an instance of an sc_object, one may
then need to identify the kind of the object in order to
call methods specific to the class of the object: module,
port, export, primitive channel or process. Given a
pointer to an object, the kind of object can be identified
by calling its kind() method, by using RTTI, or by
attempting a downcast. Here are examples of each:

sc_object* obj = sc_find_object("foo.foobar");
cout << obj->kind() << endl;
cout << typeid(*obj).name() << endl; // RTTI

Copyright © 2006 by Doulos Ltd

sc_module* m;
m = dynamic_cast<sc_module*>(obj); // Downcast
if (m)
 ... // Now we know it's a module

As a use case for this feature, consider the following
function to trace every bit-level signal below a given
module instance:

void sc_trace(sc_trace_file* tf,
 const sc_module& mod, const std::string& txt)
{
 std::vector<sc_object*> ch = mod.get_child_objects();

 for (unsigned i = 0; i < ch.size(); i++) {
 sc_object* obj = ch[i];

 sc_signal<bool>* sb;
 if (sb = dynamic_cast<sc_signal<bool>*>(obj))
 sc_trace(tf, *sb, sb->name());

 sc_signal<sc_logic>* sl;
 if (sl = dynamic_cast<sc_signal<sc_logic>*>(obj))
 sc_trace(tf, *sl, sl->name());

 sc_module* m;
 if (m = dynamic_cast<sc_module*>(obj))
 // Recursive descent...
 sc_trace(tf, *m, m->name());
 }
}

Note that the example above does the job of tracing all
bool and sc_logic signals, but is far from an ideal
solution because each candidate object type needs to
be tested for explicitly with a dynamic cast. In order to
trace signals of other kinds, further code must be added
to the function. This inelegance comes about because
of the general lack of any facility for introspection
within C++. It is not possible to determine the data
type and members of an object in a running program.
For further information on introspection, search for
"C++ introspection" on the web.

Getting a handle

It was mentioned above that processes of both the
static and the dynamic variety form part of the object
hierarchy. SystemC version 2.1 introduced the notion
of process handles into SystemC for the first time, but
these were confined to spawned processes and had
limited functionality. In the new standard, process
handles have been extended to all kinds of process and
have some useful new functionality.

The reason for the process handle is to give the user an
object through which they can access details of the
process, and which will not be destroyed when the
process is terminated. The process handle in the new
standard treats unspawned and spawned processes in a

uniform way. The more important member functions
are as follows:

class sc_process_handle
{
public:
 ...
 explicit sc_process_handle(sc_object*);
 bool valid() const;
 const char* name() const;
 sc_curr_proc_kind proc_kind() const;
 const std::vector<sc_object*>& get_child_objects() const;
 sc_object* get_parent_object() const;
 sc_object* get_process_object() const;
 bool dynamic() const;
 bool terminated() const;
 const sc_event& terminated_event() const;
};

The code fragment given earlier for traversing the
object hierarchy will visit the sc_object associated
with every static and dynamic process. However, it is
generally bad practice to rely on pointers to objects
associated with dynamic processes, since the timing of
the creation and deletion of such objects is
implementation-defined. Process handles provide a
safe mechanism for accessing process instances, both
spawned and unspawned. (Indeed, the type
sc_process_b, which was occasionally used in
SystemC applications, is now deprecated)

Given a pointer to an sc_object, a process handle can
be constructed as follows:

sc_object* obj = sc_find_object("foo.foobar");
sc_process_handle h = sc_process_handle(obj);

Function sc_spawn returns a process handle to the
spawned process:

sc_process_handle h = sc_spawn(&proc, "proc");

Function sc_get_current_process_handle() returns a
process handle for the currently executing process:

sc_process_handle h = sc_get_current_process_handle();

The validity of a process handle should always be
tested before relying on its methods:

if (h.valid()) {
 std::vector<sc_object*> children = h.get_child_objects();
 for (unsigned i = 0; i < children.size(); i++) {
 sc_process_handle ch = sc_process_handle(children[i]);
 if (ch.valid())
 ...
 }
}

The above code fragment finds all the child processes
spawned from a given process. Note that since it is

Copyright © 2006 by Doulos Ltd

implementation-defined when the sc_objects
associated with process instances get deleted, it is
always best to manipulate processes using process
handles.

The process handle provides a function to determine
whether the process is a method process, thread
process or clocked thread process:

sc_process_handle h = sc_get_current_process_handle();
switch (h.proc_kind()) {
 case SC_METHOD_PROC_ : ...
 case SC_THREAD_PROC_ : ...
 case SC_CTHREAD_PROC_ : ...
}

This mechanism provides an efficient way to know
what kind of process is being executed, and hence of
knowing whether or not the function wait() or a
blocking interface method may be called. This is an
important consideration when building transaction-
level interfaces. In principle, an interface method could
determine whether it was executing in the context of a
thread process or a method process, and then call either
wait() or next_trigger() respectively. Alternatively, a
method could bail out gracefully if called from the
wrong context.

A thread process is terminated when control is
returned from the associated function. This is a very
useful concept in connection with spawned processes,
because it allows some action to be taken when a
process is completed. The new standard provides a
simple mechanism to determine when a thread is
terminated: the member functions terminated() and
terminated_event() of the process handle class. These
methods can be used to synchronize the termination of
concurrent threads. For example:

sc_process_handle h1 = sc_spawn(&proc1, "proc1");
sc_process_handle h2 = sc_spawn(&proc2, "proc2");
wait(h1.terminated_event() & h2.terminated_event());

The above code fragment spawns two concurrent
processes proc1 and proc2, then suspends until both
processes have terminated, in any order. The effect is
similar to the fork-join construct in Verilog. Note that
the sc_objects associated with the spawned process
instances may or may not have been deleted at the
point when execution is resumed following the wait,
but the process handles will certainly still exist.

One event or another

It would also be possible to resume a parent process
when the first of a number of child processes
terminates by using an event or list as follows. The
effect is similar to the fork-join_any construct in
SystemVerilog:

sc_process_handle h1 = sc_spawn(&proc1, "proc1");
sc_process_handle h2 = sc_spawn(&proc2, "proc2");
wait(h1.terminated_event() | h2.terminated_event());

The event and list and event or list are useful
constructs for creating dynamic sensitivity to a number
of different events. A use case that sometimes arises in
transaction-level modeling is making a process
sensitive to events in each of a number of channels,
where the number is determined at elaboration time.
Here the language seems to breaks down, because an
expression cannot consist of a variable number of
terms. A loop is necessary to combine the events from
a variable number of channels, but writing such a loop
requires access to the class sc_event_or_list that
underlies the event list. But is this class a user-level
feature or an artifact of the implementation? This
question typifies the kind of issue faced during the
SystemC standardization process.

The new standard clarifies that the following solution
is allowed:

struct M: sc_module
{
 sc_port<i_f, 0> p; // Multiport

 sc_event_or_list& all_events() {
 sc_event_or_list& or_list = p[0]->event() | p[0]->event();
 for (int i = 1; i < p.size(); i++)
 or_list | p[i]->event();
 return or_list;
 }
 ...
 wait(all_events());
 ...

The new standard forbids an application from creating
an object of type sc_event_or_list. However, an
application may create a reference to such a type. The
or-list object itself is created by the operator | of class
sc_event, then further events are added to the list using
a side-effect of the operator. The function all_events()
returns a reference to the complete or-list.

Another clarification concerns what the application can
rely on regarding the lifetime of the or-list object. The
application should not assume that the or-list will
remain valid once the process has suspended. This is
why in the example above the or-list is recreated
dynamically on each call to wait.

In exceptional circumstances

SystemC version 2.1 opened up the internal error
reporting mechanism of the OSCI simulator for use in
applications. The new standard clarifies some points of
usage and tidies up the mechanism for catching
exceptions.

Copyright © 2006 by Doulos Ltd

Early versions of the reporting mechanism used a
unique integer identifier for each message type. The
integer identifiers are now deprecated, and instead the
new standard uses text strings to distinguish message
types. End users can program the actions to be
performed when a report is generated, dependent on
both the severity of the report and the message type.
The intent is that anyone generating reports will
choose appropriate message types so that end users can
customize the report handling with an appropriate
degree of granularity. Any reports assigned the same
message type will get handled in a similar way.

The new standard recommends that creators of pre-
compiled SystemC models should choose message
types that are likely to be globally unique, having the
form:

"/company/product/subcategory/subcategory..."

Furthermore, these message types should be published
in the documentation that accompanies the models.
This step should minimize the probability of clashes
between message types from different model sources,
and should help clarify the origin of any messages
encountered when running an application.

As mentioned briefly above, the new standard replaces
the type sc_exception with the C++ standard type
std::exception. The report handler now throws an
object of class sc_report, which is derived from
std::exception. A C++ exception handler can now
interrogate the report object, as shown by the following
example:

try {
 ... // SC_REPORT_ERROR called here
}
catch (sc_report rpt) {
 cout << rpt.get_severity() << endl;
 cout << rpt.get_msg_type() << endl;
 cout << rpt.get_msg() << endl;
 cout << rpt.get_file_name() << endl;
 cout << rpt.get_line_number() << endl;
 cout << rpt.get_time() << endl;
 cout << rpt.get_process_name() << endl;
 cout << rpt.what() << endl;
}

Give me the context

The OSCI simulator has an important class
sc_simcontext that represents a running simulation.
During the standardization process this class was
declared an implementation artifact, not a user-level
feature, so certain features needed to be provided in
other ways. sc_simcontext is now deprecated. Instead,
the new standard adds the following global functions:

sc_process_handle sc_get_current_process_handle();
const std::vector<sc_object*>& sc_get_top_level_objects();
sc_object* sc_find_object(const char*);
const sc_dt::uint64 sc_delta_count();
bool sc_is_running();

Several of these functions have been discussed earlier.
Function sc_delta_count() returns the absolute number
of delta cycles that have occurred during simulation,
counting from zero. Function sc_is_running() returns
true only when called during simulation.

Conclusion

The new SystemC standard offers a precise and
complete specification of the SystemC class library. It
offers a number of useful new features, as well as
deprecating some bad old features. The OSCI open-
source proof-of-concept simulator will continue to be
maintained.

The new IEEE standard includes Annexes that list the
changes made from earlier versions, and the
deprecated features.

Enjoy!

References

1. The OSCI SystemC 2.1 Language Reference
Manual, May 2005, available from
http://www.systemc.org

2. IEEE Std 1666-2005 SystemC Language
Reference Manual (not yet published)

