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Abstract- The OVM and VMM methodologies each provide 

powerful, flexible and intuitive frameworks for the construction 

of SystemVerilog verification environments.  However, many 

SystemVerilog users also have models written in C, C++, or 

sometimes SystemC.  Furthermore, the emergence of the 

SystemC TLM-1 and TLM-2.0 transaction-level modeling 

standards is having an impact on communication styles within 

SystemVerlog verification environments. This paper offers 

practical guidance on using the SystemVerilog Direct 

Programming Interface (DPI) to integrate existing C, C++ and 

SystemC code into an OVM- or VMM-based SystemVerilog 

testbench without jeopardizing portability from one simulator to 

another.  This is achieved by presenting a set of simple, robust 

guidelines for creating portable DPI code. 

 

 

1. Introduction 
 

The requirement to call a C/C++ reference model from a 

SystemVerilog test bench is not uncommon. A contemporary 

SystemVerilog test bench would typically be based on either the 

OVM or the VMM functional verification methodology or 

sometimes on a homebrew variant of these. One of the tasks 

performed by such a test bench is to compare the actual behavior of 

the design-under-test (DUT) against the behavior of a functional 

reference model, which might originally have been coded in C, C++, 

or SystemC. A C/C++ algorithm or reference model would 

necessarily be untimed, but a SystemC model could include timing 

information. 

 

Against this backdrop, the question of how to call a C/C++ or 

SystemC reference model from a SystemVerilog test bench is 

frequently raised. Unfortunately, although each of the above-

mentioned languages is defined by a formal standard, the interface 

between the languages is not standardized with the same precision as 

the languages themselves. In principle, the SystemVerilog Direct 

Programming Interface (DPI) permits procedural function calls 

between SystemVerilog and C. In practice, differences between 

implementations and the lack of any standard support for calls 

between SystemVerilog and SystemC mean that any solution needs 

to be tool-dependent. 

 

1.1 Portability 
 

The goal of this paper is to present a very practical answer to the 

question of how to use the SystemVerilog DPI to communicate 

between an OVM or VMM SystemVerilog test bench and a C/C++, 

or SystemC reference model in a way that is, as far as possible, 

portable between simulators. The intent is to provide a solution that 

actually works, today! To this end, we endeavor to offer a set of 

relatively simple coding guidelines tried-and-tested with current 

simulator releases. As a consequence, we are forced down the line of 

addressing practical issues of simulator support for the DPI and the 

procedural interface between SystemVerilog and SystemC.  

 

The DPI supports simple function calls between SystemVerilog and 

C. Simulation tool vendors also offer the facility of mixed-language 

simulation, such as the ability to instantiate a SystemC module from 

a top-level SystemVerilog module. But mixed-language instantiation 

alone is insufficient to address the issue of building procedural 

interfaces between the languages. Tool vendors offer proprietary 

(non-standard) solutions to the problem of making object-oriented 

method calls (that is, calling class member functions as opposed to 

global functions) between SystemVerilog and C++ and of passing 

transactions between SystemVerilog and SystemC. Anyone wishing 

to use these facilities is force to chose between “selling their soul” to 

the EDA vendor in the sense of getting locked into a proprietary 

solution, or of investigating and using a restricted set of features that 

form the “lowest common denominator” between tools. We take the 

latter approach in this paper. 

 

1.2 Transaction-Level Modeling 

 

The SystemC community has developed the TLM-1.0 and TLM-2.0 

standards for Transaction Level Modeling in the context of 

architectural exploration and creating so-called virtual platform 

models of a hardware platform for early software execution. 

Meanwhile, for functional verification, SystemVerilog test benches 

written to the OVM or VMM standards also make use of transaction-

level modeling (TLM) for internal communication. This means using 

function calls to pass around objects that encapsulate the attributes of 

a transaction. The transactions themselves are specific to the 

interfaces or protocols being modeled. In order to exploit this 

commonality between the domains of modeling and verification 

OVM has adopted the TLM-1.0 standard for communication and the 

latest version of VMM has added internal communication features 

inspired by TLM-2.0. In this paper, we look to develop an approach 

to communication between SystemVerilog and C/SystemC that is 

consistent and interoperable with these TLM standards. 

 

OVM and VMM test benches are transaction-oriented. On the other 

hand, although C/C++ reference models can also be transaction-

oriented, they will sometimes be completely untimed or may perform 

some transformation on an entire dataset without having any regard 

for how and when that data is presented in the hardware 

implementation or the test bench. For example, a reference model for 

an FFT may transform a dataset from the time domain to the 

frequency domain. Integrating such a reference model into a test 

bench requires that the mismatch between transaction-by-transaction 

processing and batch processing be addressed. There may also be 
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differences in the degree of pipelining present in the design-under-

test and the reference model. Although the solution to many of these 

issues will be application-specific, in this paper we pick out some 

specific aspects concerning communication across the 

SystemVerilog/C interface using the DPI. In particular, we look at 

the choice between using simple function calls versus TLM-style 

interfaces, and how to synchronize communication across the DPI. 

 

2. Goals and Assumptions  
 

The goals and assumptions of this work are as follows: 

 

i. There exists a test bench coded in SystemVerilog using 

OVM or VMM. 

 

ii. There exists an untimed reference model coded in C, C++ 

or SystemC to be called from the test bench. (Timed 

SystemC models are also considered as an extension.) 

 

iii. The SystemVerilog DPI is to be used to communicate 

between SystemVerilog and the reference model 

 

iv. The goal is to achieve portability between simulators by 

using features that have relatively mature and robust 

implementations in all simulators. 

 

v. The simulators in question are the production releases of 

SystemVerilog simulators from Cadence, Mentor and 

Synopsys current as of November 2009. 

 

vi. The goal of portability is to be achieved by creating a 

simple and robust set of guidelines that can be easily 

followed 

 

 

3. Test Bench and Reference Model 
 

A SystemVerilog test bench typically exercises an RTL model of a 

Design-Under-Test (DUT) by pin wiggling, that is, by making low 

level assignments to individual Verilog wires with more-or-less 

precise timing (the timing could be accurate to the picosecond or 

merely clock-cycle-accurate). In the OVM and VMM 

methodologies, the pin wiggling is usually encapsulated within 

driver and monitor components that communicate with the rest of the 

test bench using transactions. In VMM this is termed the command 

layer, in which transactions are simple and atomic. These atomic 

transactions are generated from higher layers of the test bench which 

combine these atomic transactions into more complex higher-level 

transactions according to the details of the interface or protocol being 

modeled. 

 

In OVM and VMM, transactions may be sent to a so-called 

scoreboard which collects functional coverage information and 

checks for functional correctness. It is within the scoreboard that a 

test bench may need to invoke a reference model to calculate the 

expected values of the DUT or to analyze the actual values generated 

by the DUT. The scoreboard is typically expected to receive both 

stimulus sent to the DUT and the actual response from the DUT 

transaction-by-transaction at some appropriate abstraction level. 

 

As observed in the introduction, a C/C++ reference model may not 

be structured to receive transactions one-by-one. Rather, the 

programming interface to the reference model may consist of a single 

function call that carries with it an entire dataset, or the dataset may 

be read from an external file. Thus it may be necessary for the 

scoreboard to collect a set of incoming transaction and then pass 

them to the reference model for batch processing. Theoretically this 

buffering could occur on the SystemVerilog or the C side of the DPI, 

but for practical reasons explained below we found it most 

straightforward to batch the data on the C side. 

 

4. Transactions in TLM-1.0 and TLM-2.0 
 

The Open SystemC Initiative (OSCI) TLM-1.0 and TLM-2.0 

standards define semantics for passing transactions as function 

arguments and for managing the lifetimes of transaction objects. 

These standards can inform our decisions concerning the best way to 

pass information between SystemVerilog and C. In particular, the 

solution we chose should be consistent with the use of the TLM 

standards on either the SystemVerilog or SystemC sides of the DPI 

interface. 

 

4.1 OVM and TLM-1.0 
 

OVM communication is based on TLM-1.0. The most significant 

aspect of TLM-1.0-style communication is that each transaction is 

strictly unidirectional. This is referred to as “effective pass-by-

value”, implying that although the C++ implementation does not 

literally use pass-by-value in every case (sometimes pass-by-

reference is used), the transaction object should not be modified by 

the target. To use a metaphor, TLM-1.0 transactions are thrown over-

the-wall from initiator to target, and any communication in the 

reverse direction requires a separate transaction. Some TLM-1.0 

users have chosen to pass pointers to data within the transaction 

object for simulation efficiency, but agree that any attempt to access 

shared memory using these pointers is outside the scope of the TLM 

interface (i.e. entirely the user’s responsibility). 

 

In TLM-1.0, the semantics of blocking transport are to send one 

unidirectional request transaction from initiator to target, and to 

receive one unidirectional response transaction back on return. This 

is fundamentally different from blocking transport in TLM-2.0 where 

a single transaction object carries both request and response. 

 

In OVM, the TLM-1.0 request/response semantics are particularly 

evident in the interface between the ovm_sequencer and the 

ovm_driver. The sequencer sends a request to a driver. The driver 

implements the transaction by communicating with lower levels of 

the protocol stack, perhaps by wiggling pins, then when it is done 

sends a response back to the sequencer. 

 

4.2 VMM and TLM-2.0 
 

VMM communication is based on the vmm_channel, and version 1.2 

of the VMM library adds TLM-2.0-style interfaces. Both 

vmm_channel and TLM-2.0 are based on the idea that transaction 

objects are passed by reference, and the lifetime of a transaction 

object may extend across multiple function calls. VMM permits a 

transaction to remain in a vmm_channel while it is worked on by the 

target, and the target is permitted to modify the state of the 

transaction object in order to return a response back to the initiator. 

The target must explicitly signal the completion of the transaction 

back to the initiator. VMM and TLM-2.0 are quite similar in these 

respects. 

 

TLM-2.0 provides two transport interfaces: blocking (b_transport) 

and non-blocking (nb_transport). With b_transport, the entire 

transaction is completed within a single method call. With 
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nb_transport, the progress of a transaction may be described using 

multiple nb_transport method calls going back-and-forth between 

initiator and target. 

 

4.3 Consequences for the DPI 
 

For our purposes, the practical consequence of the above discussion 

is that any communication between a SystemVerilog test bench and a 

C reference model should be clearly structured into a request and a 

response (however those may be implemented), and the lifetime and 

completion of the transaction need to be explicitly considered. A 

request is passed from SystemVerilog to C, and a response returned 

back to SystemVerilog. 

 

The easiest case is that of an untimed C/C++ reference model which 

is called with a dataset, does some calculation, and returns the 

answer from the very same function call.  In this case request, 

response, and completion occur in a single function call. The request 

and response do not need to be represented as explicit transaction 

objects, as will be explained below. The important thing is that the 

distinction between request and response is kept clear, and the 

completion time is well-defined. 

 

In the case that transactions need to batched to build a dataset for the 

C/++ reference model, this should be done on the C-side of the 

interface. 

 

Things get a lot more complicated if the reference model is a 

SystemC module that provides a blocking interface, because we can 

get caught up in issues of synchronization between the 

SystemVerilog and SystemC schedulers. Whatever, the SystemC 

target needs to send a response back to the SystemVerilog initiator 

when it is ready, and once more we need to design the interface such 

that we have a very clear idea of when the transaction is complete. 

 

5. Using the DPI with C 
 

Here we give a brief overview of the DPI just to highlight the 

pertinent aspects. 

 

The standard SystemVerilog DPI permits function calls between 

SystemVerilog and C, that is, C functions may be called from 

SystemVerilog, and SystemVerilog tasks and functions may be 

called from C. 

 

5.1 Features of the DPI 
 

In order to call a C function from SystemVerilog, the SystemVerilog 

code must have an import declaration which specifies the name, 

return type, and arguments of the C function. For example 

 

 
// SystemVerilog 
import “DPI-C” function int my_func(string s); 
 
initial 
  i = my_func(“Hello world\n”); 
 
// C 
int my_func( const char* s); 

 

 

In order to call a SystemVerilog task or function from C, the 

SystemVerilog code must have an export declaration which specifies 

only the name of the task/function. For example 

 

 
// SystemVerilog 
export “DPI-C” task my_task; 
 
task my_task; 
  #10; 
endtask 
 
// C 
{ my_task(); } 
 

 

DPI calls can have input, output, and inout arguments, and a return 

value in the case of a function, all of which support a limited set of 

data types. 

 

An imported DPI task/function can call an exported DPI/task 

function, and in the case of a task, that exported task is permitted to 

execute timing controls (delays or waits). Thus a nested call to a DPI 

export from a DPI import can suspend the execution of a 

SystemVerilog process.  

 

A DPI import that calls a DPI export or that makes PLI or VPI calls 

must be declared as a context import. This declaration ensures that 

the compiler passes information concerning the SystemVerilog 

context, that is, the location in the SystemVerilog module hierarchy, 

through the DPI. In the absence of context information, a C function 

is obliged to call svSetScope() to set the SystemVerilog context. 

 

A principle feature of the DPI is that DPI calls have the same 

semantics as regular SystemVerilog task/function calls when viewed 

from SystemVerilog. Moreover, DPI calls are transparent when 

viewed from the SystemVerilog side. This means that DPI 

task/function arguments use the native SystemVerilog data format, 

and that nested import -> export call chains that pass SystemVerilog 

arguments back into SystemVerilog through an intervening C 

function will be indistinguishable from native SystemVerilog calls 

that have the same functionality. This makes the DPI very 

straightforward to use from the SystemVerilog side. 

 

From the C side, things are a little more complicated. Although 

simple scalar data types have a common representation between 

SystemVerilog and C, the internal representation of more 

complicated types is simulator-specific. Thus although 

SystemVerilog data items of more complex types (such as nested 

structs and arrays) are guaranteed to pass through the DPI 

transparently, their C representations are not in general expected to 

be portable between tools. 

 

Generally, small data types have portable representations when 

passed as DPI arguments. Small data types include bit, byte, int, 

logic, string, and enums (by passing the integral  type associated with 

the enum). Logic vectors, that is, packed arrays of type logic, have a 

canonical representation in which the two bits that represent the 

value 0,1,Z,X are split across two separate words using the natural 

word length of the host. The DPI offers a standardized C 

programming interface to access and manipulate this canonical 

representation, with the effect that passing logic vectors as DPI 

arguments is portable provided that the standard API is used on the C 

side. 

 

5.2 Practical DPI Restrictions 
 

In principle, nested user-defined structs and arrays composed of the 

above-mentioned small data types may be passed as DPI arguments. 
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In practice, we found that this capability was not fully supported by 

all current simulators. 

 

In principle, the DPI offers the ability to pass so-called open array 

argument in which the size of the array is left unspecified on the 

SystemVerilog side, and provides a C programming interface to 

manipulate such open arrays on the C side. Again, we found that not 

all current simulators provide robust support for this facility. 

 

Aside from current tool limitations, the DPI also has some inherent 

limitations in the sense that it does not permit SystemVerilog class 

objects to be passed as DPI arguments, and does not permit 

SystemVerilog class methods or C++ class member functions to be 

called directly through the DPI in either direction. 

 

5.3 DPI Guidelines: SystemVerilog-to-C 
 

We were able to create simple, robust, portable DPI code to 

communicate between SystemVerilog and C by adhering to the 

following guidelines: 

 

i. Pass only small types as DPI arguments, that is, do not pass 

user-defined structs, open arrays, or multi-dimensional 

arrays 

 

ii. Logic vectors, i.e. packed arrays of type logic, may be 

passed as DPI arguments and accessed using the standard 

C API with the proviso that conditional compilation may 

be necessary to pick out the appropriate class properties in 

a portable way. Some simulators refer to the two words of 

the canonical representation using class properties .a and .b 

while others use .aval and .bval. For example: 

 

 
// SystemVerilog 
#include "svdpi.h" 
 
int print ( svLogicVecVal* v )  { 
  int i; 
  for (i = 0; i < 8; i++)  { 
    #ifdef CADENCE 
      printf("%d%d", v->a % 2, v->b % 2); 
      v->a = v->a >> 1; 
      v->b = v->b >> 1; 
    #else 
      printf("%d%d", v->aval % 2, v->bval % 2); 
      v->aval = v->aval >> 1; 
      v->bval = v->bval >> 1; 
    #endif 
  } 
  printf("\n");   
} 

 

 

iii. In order to pass structs across the DPI, break them down 

into small arguments and re-assemble the struct on the C 

side if desired. 

 

iv. Declare any imported tasks as context tasks. 

 

It should be noted that not all current simulators suffer from the same 

limitations, and it was found that each simulator had its own 

idiosyncrasies; none were without fault. However, the explicit goal 

of this paper was to find a simple, robust, portable approach that 

works with all simulators. We found that the chosen approach 

shielded us from having to struggle with the detailed differences 

between the simulator implementations, and was thus more 

productive. This same philosophy is taken throughout. 

 

5.4 DPI Guidelines: SystemVerilog-to-C++ 
 

The standard SystemVerilog DPI, i.e. “DPI-C”, only supports 

function calls between SystemVerilog and C. However it is very 

straightforward to make C++ calls simply by forcing the C++ 

compiler to use C linkage for both imported and exported functions 

as follows: 

 

 
// C++ 
#include "svdpi.h" 
 
extern "C" 
int imported_function_called_from_SystemVerilog() { … } 
 
extern “C” 
int exported_function_called_from_CPP(); 

 

 

The only caveat is that the DPI does not permit C++ member 

functions (methods) to be called. 

 

DPI code such as this can be made portable across all current 

simulators. All simulators provide the standard DPI header 

“svdpi.h”. 

 

6. Calling an Untimed C/C++ Reference Model 
 

In this section we explore the issues involved in calling an untimed 

reference model from an OVM or VMM SystemVerilog test bench 

using a Fast Fourier Transform (FFT) algorithm as an example. The 

test bench passes around transactions that each represent a single 16-

bit sample in the time domain. The intent is to use the FFT reference 

model to convert a set of samples from the time domain to the 

frequency domain for analysis. The samples are collected by the 

scoreboard as the test bench executes, a batch of samples is sent to 

the FFT reference algorithm, and the scoreboard logs the results of 

the analysis. The transaction stream in the test bench actually 

consists of multiple interleaved sample streams, where each 

individual sample is tagged with a stream number. 

 

The FFT algorithm is primarily coded in C but makes occasional use 

of C++ features such as stream I/O, so it was necessary to use a C++ 

compiler and to force the compiler to use C linkage for the DPI 

functions as described above. 

 

In the original C++ program, the main() function initialized the 

dataset to be transformed by reading the data from an external text 

file. We replaced this with two DPI functions, one to initialize the 

state of the arrays used during the FFT transform, and another to pass 

individual samples from the SystemVerilog test bench to the C++ 

model: 

 

 
// SystemVerilog 
import "DPI-C" function void initialize_fft(input int n_points); 
import "DPI-C" function void transfer_sample( 
                                input logic [3:0] tag, logic signed [15:0] data); 
 
// C++ 
#include "svdpi.h" 
extern "C" 
void initialize_fft(int n_points); 
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extern "C" 
void transfer_sample(svLogicVecVal* tag, svLogicVecVal* data); 
 

 

In keeping with the guidelines described above, only small types are 

passed through the DPI. Passing logic vectors is straightforward 

provided that conditional compilation is used on the C side for 

portability, again as described above. 

 

As an alternative approach, we investigated batching the data on the 

SystemVerilog side and passing the entire dataset across the DPI in a 

single function call, but this approach was fraught with practical 

difficulties. We attempted to pass a multi-dimensional array as a DPI 

argument, but trying to unravel the differences between the simulator 

implementations proved to be an unproductive use of time: 

 

 Simulator 1 required a single level of pointer indirection in 

the C API 

 

 Simulator 2 required a second level of pointer indirection 

in the same supposedly standard C API 

 

 Simulator 3 just crashed 

 

The samples are batched on the C side of the DPI (i.e. stored in a 

static array variable between DPI calls), and the FFT algorithm 

called when the dataset associated with each sample stream is full. 

Both of the DPI calls are necessarily non-blocking, that is, the C++ 

code executes immediately in the context of the calling 

SystemVerilog process with no simulation time passing. 

 

In terms of the earlier discussion concerning TLM, the call to 

transfer_sample() passes a request from the test bench to the 

reference model using input arguments. Although not necessary for 

this particular example, it is very straightforward to pass a response 

on return from the DPI function call by using inout or output 

arguments or the function return value. Using our approach of only 

passing small types, the distinction between request and response can 

be kept very clean. This approach works fine when called from an 

OVM or a VMM driver or scoreboard. 

 

Using this approach, it was possible to use precisely the same DPI 

calls and C++ code with an OVM test bench and simulators from 

Cadence and Mentor, and with a VMM test bench and the Synopsys 

simulator. While this study was limited to the methodology/vendor 

combinations as stated, this same approach should work successfully 

with other combinations. 

 

7. Using the DPI with SystemC 
 

All current simulators support mixed-language designs, and 

specifically permit SystemC modules to be instantiated directly from 

SystemVerilog. All simulators support the ability to make pin-level 

connections across languages, but unfortunately there is no standard 

for procedural communication between SystemVerilog and SystemC 

aside from the DPI. 

 

The native SystemVerilog DPI does not explicitly support SystemC. 

However, it is possible to use the standard DPI with SystemC in the 

sense that SystemC is just another C++ application. 

 

SystemC modules typically provide a procedural interface either by 

implementing a SystemC interface or by offering a SystemC export. 

Using this procedural interface requires the ability to make C++ 

method calls, which is not possible using the standard DPI. Two 

vendors, Cadence and Mentor, both support an extended version of 

the DPI called “DPI-SC” aimed at overcoming this restriction. 

Synopsys achieves similar functionality by extending the capability 

of “DPI-C” and by offering the TLI, or Transaction-Level Interface. 

 

If “DPI-SC” were used to make direct SystemC interface method 

calls from SystemVerilog, it may well be necessary to modify the 

argument types of the method calls, for two reasons. Firstly, 

SystemC methods often pass transaction objects, which is not 

possible with the DPI. Secondly, we may want to restrict the DPI 

arguments to small types for portability. As a consequence, it is not 

necessarily desirable to make direct SystemC interface method calls 

from SystemVerilog, and in general a better approach may be to 

instantiate the original target SystemC module from a wrapper 

module on the SystemC side, where that wrapper adheres to our 

guidelines for portable DPI use. 

 

As a further practical difficulty, although “DPI-SC” is supported by 

both Cadence and Mentor, there are differences of detail between the 

two implementations that would restrict portability when making 

class method calls. (However, the mutual implementation of calls to 

global C++ functions seems more robust, as described below.) 

 

7.1 Timing across SystemVerilog and SystemC 
 

DPI calls from SystemVerilog run in the context of the 

SystemVerilog scheduler, and C functions are intrinsically non-

blocking; a DPI call can only suspend execution by making a call 

back to a DPI task exported from SystemVerilog. But SystemVerilog 

and SystemC each have their own schedulers, and there is no 

standard programming interface for controlling the interactions 

between those schedulers. Specifically, a DPI call from 

SystemVerilog to SystemC must not block, or at least if it does call 

sc_core::wait(), the code cannot be expected to be portable. 

 

Calling into SystemC models from SystemVerilog is simplest if the 

SystemC models are untimed. In that case we can use the same 

paradigm as for any untimed C++ model, that is, a DPI call from 

SystemVerilog passes a request to an untimed model, and a response 

is passed back on return from that or from a subsequent DPI call. 

 

7.2 DPI Guidelines: SV-to-SC, untimed, one instance 
 

We were able to create simple, robust, portable DPI code to 

communicate between SystemVerilog and a single instance of an 

untimed SystemC module by adhering to the following guidelines (in 

addition to those given above): 

 

i. Use “DPI-C”, not “DPI-SC” 

 

ii. Use “DPI-C” imports only, not exports. 

 

iii. Cadence, and only Cadence, requires a dummy 

SystemVerilog module stub corresponding to the SystemC 

module: 

 

// SystemVerilog 
`ifdef NCSC 
    module scwrap () 
       (* integer foreign = "SystemC"; *); 
    endmodule 
`endif 
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iv. Put the SystemC module class definition in a header file 

named module_name.h and any member function 

definitions in a file module_name.cpp 

 

v. Define any static variables or static members in the 

module_name.cpp file, not in the header file. 

 

vi. Include the following conditional compilation directives in 

the module_name.cpp file for any SystemC module: 

 

 
// SystemC 
#ifdef CADENCE 
NCSC_MODULE_EXPORT( module_name ); 
#endif 
 
#ifdef MENTOR 
SC_MODULE_EXPORT( module_name ); 
#endif 
 

 

vii. Avoid intrusive changes to the original SystemC module 

by instantiating it from a SystemC wrapper module that 

implements the DPI funtionality. 

 

viii. Within the wrapper module, create a static data member 

that stores a pointer to the C++ module instance this, and 

initialize the pointer from the constructor. This technique 

only works for a single module instance. 

 

ix. Have the C side DPI function assemble a transaction from 

its arguments as necessary, pass the transaction to the 

corresponding method of the SystemC wrapper, and set 

any output arguments on return: 

 

 
// C++ 
scwrap* scwrap::instance = 0;  // Static member 
 
extern "C" 
void entry(unsigned char cmd, int addr, int* data) 
{ 
  bus_t tx; 
  tx.cmd = cmd; 
  tx.addr = addr; 
  tx.data = *data; 
  scwrap::instance->execute( &tx ); 
  *data = tx.data; 
} 
 

 

 

7.3 DPI Guidelines: SV-to-SC, multiple instances 
 

The above approach can easily be extended to handle multiple 

instances of the same SystemC module. Instead of having a single 

instance pointer in the wrapper pointing to the module itself, have a 

vector of pointers: 

 

 
// SystemC 
class scwrap: public sc_module 
{ 
public: 
  scwrap(sc_module_name n); 
 
  scmod* m_scmod; 
 

  static std::vector<scwrap*> instance; 
  static int count; 
  int id; 
}; 
 

 

The module constructor populates the vector of instance pointers: 

 

 
// C++ 
scwrap::scwrap(sc_module_name n) 
: sc_module(n) 
{ 
  m_scmod = new scmod("m_scmod"); 
  id = ++count; 
 
  instance[id] = this; 
} 
 

 

The DPI function can now use the id member to send calls to the 

correct target instance: 

 

 
// C++ 
extern "C" 
void entry(int id, unsigned char cmd, int addr, int* data) 
{ 
  bus_t tx; 
  tx.cmd = cmd; 
  tx.addr = addr; 
  tx.data = *data; 
  scwrap::instance[id]->m_scmod->execute( &tx ); 
  *data = tx.data; 
} 
 
extern "C" 
const char* get_path(int id) 
{ 
  return scwrap::instance[id]->name(); 
} 
 

 

On the SystemVerilog side, the id is passed to the DPI call in order 

to differentiate between the SystemC module instances. A get_path() 

DPI function is provided so that the SystemVerilog test bench can 

identify which id corresponds to which instance. The test bench can 

maintain a mapping between hierarchical paths and ids to make DPI 

calls more convenient: 

 

 
// SystemVerilog 
import "DPI-C" function void entry( 
             input int id, input byte cmd, input int addr, inout int data); 
import "DPI-C" function string get_path(input int id); 
   
int path_to_id[string]; 
… 
virtual function void end_of_elaboration; 
   path_to_id[get_path(1)] = 1; 
   path_to_id[get_path(2)] = 2; 
endfunction 
 

 

Unfortunately, differences between simulator implementations cause 

portability issues again. The SystemC name() method returns the 

hierarchical path in a different format in each case! Conditional 

compilation can be used to patch up the differences: 
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// SystemVerilog 
`ifdef CADENCE 
     id = path_to_id["top.m_hier.m_scwrap_1"]; 
`endif 
`ifdef MENTOR 
     id = path_to_id["/top/m_hier/m_scwrap_1"]; 
`endif 
`ifdef SYNOPSYS 
     id = path_to_id["top_m_hier_m_scwrap_1"]; 
`endif 
entry(id, tx.cmd, tx.addr, tx.data);  
 

 

What can one say? 

 

Using this approach, with minor use of conditional compilation it 

was possible once again to use precisely the same DPI calls and C++ 

code with an OVM test bench and simulators from Cadence and 

Mentor, and with a VMM test bench and the Synopsys simulator. 

 

7.4 DPI Guidelines: Timed SystemC Models 
 

As mentioned at the outside, one premise of this paper was the 

requirement to integrate untimed reference models into a 

SystemVerilog test bench. However, as an extension, we now 

consider timed SystemC models. 

 

It is increasingly the case that timed SystemC models conform to the 

OSCI TLM-2.0 standard. As described above, TLM-2.0 supports 

both blocking and non-blocking transport interfaces for processing 

regular transactions. Even models that do not conform to the TLM-

2.0 standard typically use these same concepts. 

 

To handle a timed SystemC model, because the DPI call itself must 

not be blocked by the SystemC scheduler (as discussed above), the 

response may need to be returned at a later time using a separate DPI 

call from SystemC to SystemVerilog. Hence we require both DPI 

imports and DPI exports between SystemVerilog and SystemC. 

 

The approach we have adopted is to use two DPI calls, a DPI import 

function that sends a request to the SystemC model (by passing small 

types as function arguments), and a DPI export function that sends a 

response back to the SystemVerilog test bench at a later time (again 

by passing small types as function arguments). Both can be simple 

non-blocking function calls. This mechanism has similarities with 

the TLM-2.0 non-blocking interface, and like that interface, is able to 

support multiple simultaneous pipelined transactions. However, our 

approach does not require that either the SystemVerilog or the 

SystemC model be TLM-2.0-compliant.  

 

As a purely practical matter, linking SystemVerilog and SystemC 

applications with function calls in both directions seems best handled 

by switching to “DPI-SC” for Cadence and Mentor, while “DPI-C” 

is sufficient for Synopsys. As mentioned above, currently there are 

portability issues when making SystemC method calls using “DPI-

SC”, but the implementation of global C++ function calls through the 

“DPI-SC” interface (or “DPI-C” for Synopsys) seem to be robust for 

all simulators. Synopsys users also have the option of using the TLI, 

but a premise of this paper is the desire to create portable code and to 

minimize reliance on vendor-specific features. 

 

To call global C++ functions at “DPI-SC” imports requires the use of 

vendor-specific function registration macros as follows: 

 

 

// SystemC 
#ifdef CADENCE 
  #define NCSC_INCLUDE_TASK_CALLS 
  #define CDN_OR_MEN 
#endif 
 
#ifdef MENTOR 
  #define MTI_BIND_SC_MEMBER_FUNCTION 
  #include "sc_dpiheader.h" 
  #define CDN_OR_MEN 
#endif 
 
// In module constructor 
#ifdef MENTOR 
   SC_DPI_REGISTER_CPP_FUNCTION(entry); 
   SC_DPI_REGISTER_CPP_FUNCTION(get_path); 
#endif 
 
// At file scope 
#ifdef CADENCE 
   NCSC_REGISTER_DPI(entry) 
   NCSC_REGISTER_DPI(get_path) 
#endif 
 

 

In order to call a DPI export function from C++, we need to set the 

SystemVerilog scope. The programming interface to achieve this 

(svGetScope, svSetScope) is part of the SystemVerilog language 

standard. The scope can be determined from within the DPI import 

function, and then used subsequently for the return call to the DPI 

export: 

 

 
// C++ 
static svScope  calling_scope; 
 
// DPI import 
extern "C" 
void entry(int id, char cmd, int addr, int* data) { 
  … 
  calling_scope = svGetScope(); 
} 
 
… 
{ 
    svSetScope(calling_scope); 
 
    // Call to DPI export 
    tx_done(id, tx->cmd, tx->addr, tx->data); 
} 
 

 

In order to deal with multiple outstanding transactions, the SystemC 

wrapper module maintains a pool of SystemC threads. Incoming 

transactions are allocated to the next free thread, and a thread 

remains tied to a transaction instance until the response has been 

returned to the SystemVerilog test bench and the transaction 

completed. The thread can then be returned to the pool and reused. 

Each thread has an associated event which, when notified, causes the 

thread to resume and process a new incoming transaction. 

 

Each incoming transaction is handled by the SystemC wrapper as 

follows: 

 

i. Assemble a new transaction object from the DPI arguments 

ii. Associate the transaction object with the next free thread 

iii. Notify an event to cause the thread to resume 

 

Each SystemC thread executes the following loop: 
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i. Wait for an event notification 

ii. Call the blocking method of the SystemC module instance 

to implement the functionality requested by the test bench 

iii. On return from the blocking method call the DPI export, 

unpacking any response attributes from the transaction and 

passing them as DPI arguments 

iv. Delete the transaction object 

 

On the SystemVerilog side, the implementation of the DPI export 

method can handle the response as follows: 

 

i. Check the response attributes passed as arguments 

ii. Use the id argument to tie up with the request, for example 

by executing a Verilog event trigger ->done_ev[id] 

iii. The transactor that generated the request can either block 

waiting for the response or can generate several pipelined 

transactions without waiting 

 

There are some key points to note from the above: the actual DPI 

calls are all non-blocking; the blocking method of the target SystemC 

module is called from a SystemC thread in the wrapper; a thread pool 

is needed to support multiple pipelined transactions; and an id 

argument is used to map global DPI calls to the module hierarchy 

(see the description of multiple instances above). 

 

On the SystemVerilog side, the lifetime of each transaction will 

extend beyond the call to the DPI import. Hence it is essential that 

the test bench creates a new transaction object per transaction rather 

than reusing the same object, which may still be “alive”. (This is 

considered good practice anyway in both OVM and VMM.) The DPI 

export call that indicates the completion of the transaction is 

necessarily a global function call, rather than being a class method 

call to the OVM component or VMM transactor that initiated the 

transaction, so the programmer must contrive some mechanism to 

communicate between the incoming DPI call and the initiator, based 

on the id argument that is common to the outgoing and incoming 

DPI calls. From the SystemVerilog side, the incoming DPI export 

call is effectively asynchronous with respect to the operation of the 

test bench. The initiating component/transactor can either suspend 

until it is notified of the completion of the transaction, or can 

continue to generate new transactions. 

 

Garbage collection needs to be considered. Garbage collection in 

SystemVerilog is implicit, but on the C++ side the lifetime of 

transaction objects needs to be carefully thought through such that 

objects can be either deleted or re-used when they die.  

 

Once again, with this approach it was possible to use precisely the 

same C++ code with an OVM test bench and simulators from 

Cadence and Mentor, and with a VMM test bench and the Synopsys 

simulator. On the SystemVerilog side, the DPI calls differed only in 

that Cadence and Mentor used “DPI-SC” and Synopsys “DPI-C”. 

 

8. Conclusions 
 

We set out to find a way of using the SystemVerilog DPI to call 

C/C++ and SystemC reference models in a way that was simple, 

robust, and portable between simulators. On the whole, the results 

were very positive. We found an approach by which we were able to 

create a single body of C/C++ or SystemC code that is portable 

between all current simulators, albeit by imposing some restrictions 

on the DPI features used. 

 

It is true that the lowest common denominator between DPI 

implementations uncovered by this work is substantially below the 

full level of capability of any of the individual simulators considered, 

and also true that this level will change over time as vendors improve 

their implementations. Users must make their own decision 

concerning the value of portability between simulators versus 

exploiting the full capabilities of their chosen vendor. 

 

8.1 Summary of the Common Approach 
 

i. Pass only small types and logic vectors as DPI arguments, 

that is, do not pass user-defined structs, open arrays, or 

multi-dimensional arrays 

 

ii. For untimed reference models (C/C++ or SystemC), use 

“DPI-C” imports only, that is, do not use DPI exports or  

“DPI-SC” 

 

iii. For SystemC reference models, use a SystemC wrapper 

module that can assemble or convert function arguments 

and re-direct incoming DPI calls to the appropriate 

SystemC module instance 

 

iv. Have the DPI calls identify the target SystemC module 

instance using an id argument 

 

v. For timed SystemC models, use “DPI-SC” (Cadence and 

Mentor) or “DPI-C” (Synopsys) 

 

vi. For timed SystemC models, have the SystemC wrapper 

maintain a pool of SystemC threads to call any blocking 

SystemC method 

 

vii. For timed SystemC models, have the SystemC wrapper 

call a DPI export on completion of the transaction 

 

viii. Have all DPI calls in either direction be non-blocking 

 

ix. Use conditional compilation as necessary to handle  

differences in directives, headers, macro names, and 

hierarchical path names between simulators 

 

 

8.2 Example Files 

 
Example files to accompany this paper can be downloaded from 

www.doulos.com/knowhow/systemverilog/ 

 

9. References 
 
[1] IEEE Std 1800-2005 “IEEE Standard for SystemVerilog – Unified 

Hardware Design, Specification, and Verification Language,” 
  

[2] IEEE Std 1666-2005 “IEEE Standard SystemC Language Reference 

Manual” 
 

[3] OSCI TLM-2.0 Language Reference Manual, version JA32, 2009 

 
[4] Bergeron, Cerny, Hunter and Nightingale. 2005 Verification Methodology 

Manual for SystemVerilog. Springer ISBN-10: 0-387-25538-9 

 
[5] VMM Standard Library User Guide, Version 1.2, November 2009 

 

[6] OVM Class Reference, Version 2.0.2, June 2009 
 



 
 

 Copyright © 2010 by Doulos. 9 

 


	Introduction
	2. Goals and Assumptions
	3. Test Bench and Reference Model
	4. Transactions in TLM-1.0 and TLM-2.0
	5. Using the DPI with C
	6. Calling an Untimed C/C++ Reference Model
	7. Using the DPI with SystemC
	8. Conclusions
	9. References

