

 Copyright © 2010 by Doulos. 1

SystemVerilog Meets C++: Re-use of Existing C/C++ Models
Just Got Easier

John Aynsley

Doulos
john.aynsley@doulos.com

Abstract- The OVM and VMM methodologies each provide

powerful, flexible and intuitive frameworks for the construction

of SystemVerilog verification environments. However, many

SystemVerilog users also have models written in C, C++, or

sometimes SystemC. Furthermore, the emergence of the

SystemC TLM-1 and TLM-2.0 transaction-level modeling

standards is having an impact on communication styles within

SystemVerlog verification environments. This paper offers

practical guidance on using the SystemVerilog Direct

Programming Interface (DPI) to integrate existing C, C++ and

SystemC code into an OVM- or VMM-based SystemVerilog

testbench without jeopardizing portability from one simulator to

another. This is achieved by presenting a set of simple, robust

guidelines for creating portable DPI code.

1. Introduction

The requirement to call a C/C++ reference model from a

SystemVerilog test bench is not uncommon. A contemporary

SystemVerilog test bench would typically be based on either the

OVM or the VMM functional verification methodology or

sometimes on a homebrew variant of these. One of the tasks

performed by such a test bench is to compare the actual behavior of

the design-under-test (DUT) against the behavior of a functional

reference model, which might originally have been coded in C, C++,

or SystemC. A C/C++ algorithm or reference model would

necessarily be untimed, but a SystemC model could include timing

information.

Against this backdrop, the question of how to call a C/C++ or

SystemC reference model from a SystemVerilog test bench is

frequently raised. Unfortunately, although each of the above-

mentioned languages is defined by a formal standard, the interface

between the languages is not standardized with the same precision as

the languages themselves. In principle, the SystemVerilog Direct

Programming Interface (DPI) permits procedural function calls

between SystemVerilog and C. In practice, differences between

implementations and the lack of any standard support for calls

between SystemVerilog and SystemC mean that any solution needs

to be tool-dependent.

1.1 Portability

The goal of this paper is to present a very practical answer to the

question of how to use the SystemVerilog DPI to communicate

between an OVM or VMM SystemVerilog test bench and a C/C++,

or SystemC reference model in a way that is, as far as possible,

portable between simulators. The intent is to provide a solution that

actually works, today! To this end, we endeavor to offer a set of

relatively simple coding guidelines tried-and-tested with current

simulator releases. As a consequence, we are forced down the line of

addressing practical issues of simulator support for the DPI and the

procedural interface between SystemVerilog and SystemC.

The DPI supports simple function calls between SystemVerilog and

C. Simulation tool vendors also offer the facility of mixed-language

simulation, such as the ability to instantiate a SystemC module from

a top-level SystemVerilog module. But mixed-language instantiation

alone is insufficient to address the issue of building procedural

interfaces between the languages. Tool vendors offer proprietary

(non-standard) solutions to the problem of making object-oriented

method calls (that is, calling class member functions as opposed to

global functions) between SystemVerilog and C++ and of passing

transactions between SystemVerilog and SystemC. Anyone wishing

to use these facilities is force to chose between “selling their soul” to

the EDA vendor in the sense of getting locked into a proprietary

solution, or of investigating and using a restricted set of features that

form the “lowest common denominator” between tools. We take the

latter approach in this paper.

1.2 Transaction-Level Modeling

The SystemC community has developed the TLM-1.0 and TLM-2.0

standards for Transaction Level Modeling in the context of

architectural exploration and creating so-called virtual platform

models of a hardware platform for early software execution.

Meanwhile, for functional verification, SystemVerilog test benches

written to the OVM or VMM standards also make use of transaction-

level modeling (TLM) for internal communication. This means using

function calls to pass around objects that encapsulate the attributes of

a transaction. The transactions themselves are specific to the

interfaces or protocols being modeled. In order to exploit this

commonality between the domains of modeling and verification

OVM has adopted the TLM-1.0 standard for communication and the

latest version of VMM has added internal communication features

inspired by TLM-2.0. In this paper, we look to develop an approach

to communication between SystemVerilog and C/SystemC that is

consistent and interoperable with these TLM standards.

OVM and VMM test benches are transaction-oriented. On the other

hand, although C/C++ reference models can also be transaction-

oriented, they will sometimes be completely untimed or may perform

some transformation on an entire dataset without having any regard

for how and when that data is presented in the hardware

implementation or the test bench. For example, a reference model for

an FFT may transform a dataset from the time domain to the

frequency domain. Integrating such a reference model into a test

bench requires that the mismatch between transaction-by-transaction

processing and batch processing be addressed. There may also be

 Copyright © 2010 by Doulos. 2

differences in the degree of pipelining present in the design-under-

test and the reference model. Although the solution to many of these

issues will be application-specific, in this paper we pick out some

specific aspects concerning communication across the

SystemVerilog/C interface using the DPI. In particular, we look at

the choice between using simple function calls versus TLM-style

interfaces, and how to synchronize communication across the DPI.

2. Goals and Assumptions

The goals and assumptions of this work are as follows:

i. There exists a test bench coded in SystemVerilog using

OVM or VMM.

ii. There exists an untimed reference model coded in C, C++

or SystemC to be called from the test bench. (Timed

SystemC models are also considered as an extension.)

iii. The SystemVerilog DPI is to be used to communicate

between SystemVerilog and the reference model

iv. The goal is to achieve portability between simulators by

using features that have relatively mature and robust

implementations in all simulators.

v. The simulators in question are the production releases of

SystemVerilog simulators from Cadence, Mentor and

Synopsys current as of November 2009.

vi. The goal of portability is to be achieved by creating a

simple and robust set of guidelines that can be easily

followed

3. Test Bench and Reference Model

A SystemVerilog test bench typically exercises an RTL model of a

Design-Under-Test (DUT) by pin wiggling, that is, by making low

level assignments to individual Verilog wires with more-or-less

precise timing (the timing could be accurate to the picosecond or

merely clock-cycle-accurate). In the OVM and VMM

methodologies, the pin wiggling is usually encapsulated within

driver and monitor components that communicate with the rest of the

test bench using transactions. In VMM this is termed the command

layer, in which transactions are simple and atomic. These atomic

transactions are generated from higher layers of the test bench which

combine these atomic transactions into more complex higher-level

transactions according to the details of the interface or protocol being

modeled.

In OVM and VMM, transactions may be sent to a so-called

scoreboard which collects functional coverage information and

checks for functional correctness. It is within the scoreboard that a

test bench may need to invoke a reference model to calculate the

expected values of the DUT or to analyze the actual values generated

by the DUT. The scoreboard is typically expected to receive both

stimulus sent to the DUT and the actual response from the DUT

transaction-by-transaction at some appropriate abstraction level.

As observed in the introduction, a C/C++ reference model may not

be structured to receive transactions one-by-one. Rather, the

programming interface to the reference model may consist of a single

function call that carries with it an entire dataset, or the dataset may

be read from an external file. Thus it may be necessary for the

scoreboard to collect a set of incoming transaction and then pass

them to the reference model for batch processing. Theoretically this

buffering could occur on the SystemVerilog or the C side of the DPI,

but for practical reasons explained below we found it most

straightforward to batch the data on the C side.

4. Transactions in TLM-1.0 and TLM-2.0

The Open SystemC Initiative (OSCI) TLM-1.0 and TLM-2.0

standards define semantics for passing transactions as function

arguments and for managing the lifetimes of transaction objects.

These standards can inform our decisions concerning the best way to

pass information between SystemVerilog and C. In particular, the

solution we chose should be consistent with the use of the TLM

standards on either the SystemVerilog or SystemC sides of the DPI

interface.

4.1 OVM and TLM-1.0

OVM communication is based on TLM-1.0. The most significant

aspect of TLM-1.0-style communication is that each transaction is

strictly unidirectional. This is referred to as “effective pass-by-

value”, implying that although the C++ implementation does not

literally use pass-by-value in every case (sometimes pass-by-

reference is used), the transaction object should not be modified by

the target. To use a metaphor, TLM-1.0 transactions are thrown over-

the-wall from initiator to target, and any communication in the

reverse direction requires a separate transaction. Some TLM-1.0

users have chosen to pass pointers to data within the transaction

object for simulation efficiency, but agree that any attempt to access

shared memory using these pointers is outside the scope of the TLM

interface (i.e. entirely the user’s responsibility).

In TLM-1.0, the semantics of blocking transport are to send one

unidirectional request transaction from initiator to target, and to

receive one unidirectional response transaction back on return. This

is fundamentally different from blocking transport in TLM-2.0 where

a single transaction object carries both request and response.

In OVM, the TLM-1.0 request/response semantics are particularly

evident in the interface between the ovm_sequencer and the

ovm_driver. The sequencer sends a request to a driver. The driver

implements the transaction by communicating with lower levels of

the protocol stack, perhaps by wiggling pins, then when it is done

sends a response back to the sequencer.

4.2 VMM and TLM-2.0

VMM communication is based on the vmm_channel, and version 1.2

of the VMM library adds TLM-2.0-style interfaces. Both

vmm_channel and TLM-2.0 are based on the idea that transaction

objects are passed by reference, and the lifetime of a transaction

object may extend across multiple function calls. VMM permits a

transaction to remain in a vmm_channel while it is worked on by the

target, and the target is permitted to modify the state of the

transaction object in order to return a response back to the initiator.

The target must explicitly signal the completion of the transaction

back to the initiator. VMM and TLM-2.0 are quite similar in these

respects.

TLM-2.0 provides two transport interfaces: blocking (b_transport)

and non-blocking (nb_transport). With b_transport, the entire

transaction is completed within a single method call. With

 Copyright © 2010 by Doulos. 3

nb_transport, the progress of a transaction may be described using

multiple nb_transport method calls going back-and-forth between

initiator and target.

4.3 Consequences for the DPI

For our purposes, the practical consequence of the above discussion

is that any communication between a SystemVerilog test bench and a

C reference model should be clearly structured into a request and a

response (however those may be implemented), and the lifetime and

completion of the transaction need to be explicitly considered. A

request is passed from SystemVerilog to C, and a response returned

back to SystemVerilog.

The easiest case is that of an untimed C/C++ reference model which

is called with a dataset, does some calculation, and returns the

answer from the very same function call. In this case request,

response, and completion occur in a single function call. The request

and response do not need to be represented as explicit transaction

objects, as will be explained below. The important thing is that the

distinction between request and response is kept clear, and the

completion time is well-defined.

In the case that transactions need to batched to build a dataset for the

C/++ reference model, this should be done on the C-side of the

interface.

Things get a lot more complicated if the reference model is a

SystemC module that provides a blocking interface, because we can

get caught up in issues of synchronization between the

SystemVerilog and SystemC schedulers. Whatever, the SystemC

target needs to send a response back to the SystemVerilog initiator

when it is ready, and once more we need to design the interface such

that we have a very clear idea of when the transaction is complete.

5. Using the DPI with C

Here we give a brief overview of the DPI just to highlight the

pertinent aspects.

The standard SystemVerilog DPI permits function calls between

SystemVerilog and C, that is, C functions may be called from

SystemVerilog, and SystemVerilog tasks and functions may be

called from C.

5.1 Features of the DPI

In order to call a C function from SystemVerilog, the SystemVerilog

code must have an import declaration which specifies the name,

return type, and arguments of the C function. For example

// SystemVerilog
import “DPI-C” function int my_func(string s);

initial
 i = my_func(“Hello world\n”);

// C
int my_func(const char* s);

In order to call a SystemVerilog task or function from C, the

SystemVerilog code must have an export declaration which specifies

only the name of the task/function. For example

// SystemVerilog
export “DPI-C” task my_task;

task my_task;
 #10;
endtask

// C
{ my_task(); }

DPI calls can have input, output, and inout arguments, and a return

value in the case of a function, all of which support a limited set of

data types.

An imported DPI task/function can call an exported DPI/task

function, and in the case of a task, that exported task is permitted to

execute timing controls (delays or waits). Thus a nested call to a DPI

export from a DPI import can suspend the execution of a

SystemVerilog process.

A DPI import that calls a DPI export or that makes PLI or VPI calls

must be declared as a context import. This declaration ensures that

the compiler passes information concerning the SystemVerilog

context, that is, the location in the SystemVerilog module hierarchy,

through the DPI. In the absence of context information, a C function

is obliged to call svSetScope() to set the SystemVerilog context.

A principle feature of the DPI is that DPI calls have the same

semantics as regular SystemVerilog task/function calls when viewed

from SystemVerilog. Moreover, DPI calls are transparent when

viewed from the SystemVerilog side. This means that DPI

task/function arguments use the native SystemVerilog data format,

and that nested import -> export call chains that pass SystemVerilog

arguments back into SystemVerilog through an intervening C

function will be indistinguishable from native SystemVerilog calls

that have the same functionality. This makes the DPI very

straightforward to use from the SystemVerilog side.

From the C side, things are a little more complicated. Although

simple scalar data types have a common representation between

SystemVerilog and C, the internal representation of more

complicated types is simulator-specific. Thus although

SystemVerilog data items of more complex types (such as nested

structs and arrays) are guaranteed to pass through the DPI

transparently, their C representations are not in general expected to

be portable between tools.

Generally, small data types have portable representations when

passed as DPI arguments. Small data types include bit, byte, int,

logic, string, and enums (by passing the integral type associated with

the enum). Logic vectors, that is, packed arrays of type logic, have a

canonical representation in which the two bits that represent the

value 0,1,Z,X are split across two separate words using the natural

word length of the host. The DPI offers a standardized C

programming interface to access and manipulate this canonical

representation, with the effect that passing logic vectors as DPI

arguments is portable provided that the standard API is used on the C

side.

5.2 Practical DPI Restrictions

In principle, nested user-defined structs and arrays composed of the

above-mentioned small data types may be passed as DPI arguments.

 Copyright © 2010 by Doulos. 4

In practice, we found that this capability was not fully supported by

all current simulators.

In principle, the DPI offers the ability to pass so-called open array

argument in which the size of the array is left unspecified on the

SystemVerilog side, and provides a C programming interface to

manipulate such open arrays on the C side. Again, we found that not

all current simulators provide robust support for this facility.

Aside from current tool limitations, the DPI also has some inherent

limitations in the sense that it does not permit SystemVerilog class

objects to be passed as DPI arguments, and does not permit

SystemVerilog class methods or C++ class member functions to be

called directly through the DPI in either direction.

5.3 DPI Guidelines: SystemVerilog-to-C

We were able to create simple, robust, portable DPI code to

communicate between SystemVerilog and C by adhering to the

following guidelines:

i. Pass only small types as DPI arguments, that is, do not pass

user-defined structs, open arrays, or multi-dimensional

arrays

ii. Logic vectors, i.e. packed arrays of type logic, may be

passed as DPI arguments and accessed using the standard

C API with the proviso that conditional compilation may

be necessary to pick out the appropriate class properties in

a portable way. Some simulators refer to the two words of

the canonical representation using class properties .a and .b

while others use .aval and .bval. For example:

// SystemVerilog
#include "svdpi.h"

int print (svLogicVecVal* v) {
 int i;
 for (i = 0; i < 8; i++) {
 #ifdef CADENCE
 printf("%d%d", v->a % 2, v->b % 2);
 v->a = v->a >> 1;
 v->b = v->b >> 1;
 #else
 printf("%d%d", v->aval % 2, v->bval % 2);
 v->aval = v->aval >> 1;
 v->bval = v->bval >> 1;
 #endif
 }
 printf("\n");
}

iii. In order to pass structs across the DPI, break them down

into small arguments and re-assemble the struct on the C

side if desired.

iv. Declare any imported tasks as context tasks.

It should be noted that not all current simulators suffer from the same

limitations, and it was found that each simulator had its own

idiosyncrasies; none were without fault. However, the explicit goal

of this paper was to find a simple, robust, portable approach that

works with all simulators. We found that the chosen approach

shielded us from having to struggle with the detailed differences

between the simulator implementations, and was thus more

productive. This same philosophy is taken throughout.

5.4 DPI Guidelines: SystemVerilog-to-C++

The standard SystemVerilog DPI, i.e. “DPI-C”, only supports

function calls between SystemVerilog and C. However it is very

straightforward to make C++ calls simply by forcing the C++

compiler to use C linkage for both imported and exported functions

as follows:

// C++
#include "svdpi.h"

extern "C"
int imported_function_called_from_SystemVerilog() { … }

extern “C”
int exported_function_called_from_CPP();

The only caveat is that the DPI does not permit C++ member

functions (methods) to be called.

DPI code such as this can be made portable across all current

simulators. All simulators provide the standard DPI header

“svdpi.h”.

6. Calling an Untimed C/C++ Reference Model

In this section we explore the issues involved in calling an untimed

reference model from an OVM or VMM SystemVerilog test bench

using a Fast Fourier Transform (FFT) algorithm as an example. The

test bench passes around transactions that each represent a single 16-

bit sample in the time domain. The intent is to use the FFT reference

model to convert a set of samples from the time domain to the

frequency domain for analysis. The samples are collected by the

scoreboard as the test bench executes, a batch of samples is sent to

the FFT reference algorithm, and the scoreboard logs the results of

the analysis. The transaction stream in the test bench actually

consists of multiple interleaved sample streams, where each

individual sample is tagged with a stream number.

The FFT algorithm is primarily coded in C but makes occasional use

of C++ features such as stream I/O, so it was necessary to use a C++

compiler and to force the compiler to use C linkage for the DPI

functions as described above.

In the original C++ program, the main() function initialized the

dataset to be transformed by reading the data from an external text

file. We replaced this with two DPI functions, one to initialize the

state of the arrays used during the FFT transform, and another to pass

individual samples from the SystemVerilog test bench to the C++

model:

// SystemVerilog
import "DPI-C" function void initialize_fft(input int n_points);
import "DPI-C" function void transfer_sample(
 input logic [3:0] tag, logic signed [15:0] data);

// C++
#include "svdpi.h"
extern "C"
void initialize_fft(int n_points);

 Copyright © 2010 by Doulos. 5

extern "C"
void transfer_sample(svLogicVecVal* tag, svLogicVecVal* data);

In keeping with the guidelines described above, only small types are

passed through the DPI. Passing logic vectors is straightforward

provided that conditional compilation is used on the C side for

portability, again as described above.

As an alternative approach, we investigated batching the data on the

SystemVerilog side and passing the entire dataset across the DPI in a

single function call, but this approach was fraught with practical

difficulties. We attempted to pass a multi-dimensional array as a DPI

argument, but trying to unravel the differences between the simulator

implementations proved to be an unproductive use of time:

 Simulator 1 required a single level of pointer indirection in

the C API

 Simulator 2 required a second level of pointer indirection

in the same supposedly standard C API

 Simulator 3 just crashed

The samples are batched on the C side of the DPI (i.e. stored in a

static array variable between DPI calls), and the FFT algorithm

called when the dataset associated with each sample stream is full.

Both of the DPI calls are necessarily non-blocking, that is, the C++

code executes immediately in the context of the calling

SystemVerilog process with no simulation time passing.

In terms of the earlier discussion concerning TLM, the call to

transfer_sample() passes a request from the test bench to the

reference model using input arguments. Although not necessary for

this particular example, it is very straightforward to pass a response

on return from the DPI function call by using inout or output

arguments or the function return value. Using our approach of only

passing small types, the distinction between request and response can

be kept very clean. This approach works fine when called from an

OVM or a VMM driver or scoreboard.

Using this approach, it was possible to use precisely the same DPI

calls and C++ code with an OVM test bench and simulators from

Cadence and Mentor, and with a VMM test bench and the Synopsys

simulator. While this study was limited to the methodology/vendor

combinations as stated, this same approach should work successfully

with other combinations.

7. Using the DPI with SystemC

All current simulators support mixed-language designs, and

specifically permit SystemC modules to be instantiated directly from

SystemVerilog. All simulators support the ability to make pin-level

connections across languages, but unfortunately there is no standard

for procedural communication between SystemVerilog and SystemC

aside from the DPI.

The native SystemVerilog DPI does not explicitly support SystemC.

However, it is possible to use the standard DPI with SystemC in the

sense that SystemC is just another C++ application.

SystemC modules typically provide a procedural interface either by

implementing a SystemC interface or by offering a SystemC export.

Using this procedural interface requires the ability to make C++

method calls, which is not possible using the standard DPI. Two

vendors, Cadence and Mentor, both support an extended version of

the DPI called “DPI-SC” aimed at overcoming this restriction.

Synopsys achieves similar functionality by extending the capability

of “DPI-C” and by offering the TLI, or Transaction-Level Interface.

If “DPI-SC” were used to make direct SystemC interface method

calls from SystemVerilog, it may well be necessary to modify the

argument types of the method calls, for two reasons. Firstly,

SystemC methods often pass transaction objects, which is not

possible with the DPI. Secondly, we may want to restrict the DPI

arguments to small types for portability. As a consequence, it is not

necessarily desirable to make direct SystemC interface method calls

from SystemVerilog, and in general a better approach may be to

instantiate the original target SystemC module from a wrapper

module on the SystemC side, where that wrapper adheres to our

guidelines for portable DPI use.

As a further practical difficulty, although “DPI-SC” is supported by

both Cadence and Mentor, there are differences of detail between the

two implementations that would restrict portability when making

class method calls. (However, the mutual implementation of calls to

global C++ functions seems more robust, as described below.)

7.1 Timing across SystemVerilog and SystemC

DPI calls from SystemVerilog run in the context of the

SystemVerilog scheduler, and C functions are intrinsically non-

blocking; a DPI call can only suspend execution by making a call

back to a DPI task exported from SystemVerilog. But SystemVerilog

and SystemC each have their own schedulers, and there is no

standard programming interface for controlling the interactions

between those schedulers. Specifically, a DPI call from

SystemVerilog to SystemC must not block, or at least if it does call

sc_core::wait(), the code cannot be expected to be portable.

Calling into SystemC models from SystemVerilog is simplest if the

SystemC models are untimed. In that case we can use the same

paradigm as for any untimed C++ model, that is, a DPI call from

SystemVerilog passes a request to an untimed model, and a response

is passed back on return from that or from a subsequent DPI call.

7.2 DPI Guidelines: SV-to-SC, untimed, one instance

We were able to create simple, robust, portable DPI code to

communicate between SystemVerilog and a single instance of an

untimed SystemC module by adhering to the following guidelines (in

addition to those given above):

i. Use “DPI-C”, not “DPI-SC”

ii. Use “DPI-C” imports only, not exports.

iii. Cadence, and only Cadence, requires a dummy

SystemVerilog module stub corresponding to the SystemC

module:

// SystemVerilog
`ifdef NCSC
 module scwrap ()
 (* integer foreign = "SystemC"; *);
 endmodule
`endif

 Copyright © 2010 by Doulos. 6

iv. Put the SystemC module class definition in a header file

named module_name.h and any member function

definitions in a file module_name.cpp

v. Define any static variables or static members in the

module_name.cpp file, not in the header file.

vi. Include the following conditional compilation directives in

the module_name.cpp file for any SystemC module:

// SystemC
#ifdef CADENCE
NCSC_MODULE_EXPORT(module_name);
#endif

#ifdef MENTOR
SC_MODULE_EXPORT(module_name);
#endif

vii. Avoid intrusive changes to the original SystemC module

by instantiating it from a SystemC wrapper module that

implements the DPI funtionality.

viii. Within the wrapper module, create a static data member

that stores a pointer to the C++ module instance this, and

initialize the pointer from the constructor. This technique

only works for a single module instance.

ix. Have the C side DPI function assemble a transaction from

its arguments as necessary, pass the transaction to the

corresponding method of the SystemC wrapper, and set

any output arguments on return:

// C++
scwrap* scwrap::instance = 0; // Static member

extern "C"
void entry(unsigned char cmd, int addr, int* data)
{
 bus_t tx;
 tx.cmd = cmd;
 tx.addr = addr;
 tx.data = *data;
 scwrap::instance->execute(&tx);
 *data = tx.data;
}

7.3 DPI Guidelines: SV-to-SC, multiple instances

The above approach can easily be extended to handle multiple

instances of the same SystemC module. Instead of having a single

instance pointer in the wrapper pointing to the module itself, have a

vector of pointers:

// SystemC
class scwrap: public sc_module
{
public:
 scwrap(sc_module_name n);

 scmod* m_scmod;

 static std::vector<scwrap*> instance;
 static int count;
 int id;
};

The module constructor populates the vector of instance pointers:

// C++
scwrap::scwrap(sc_module_name n)
: sc_module(n)
{
 m_scmod = new scmod("m_scmod");
 id = ++count;

 instance[id] = this;
}

The DPI function can now use the id member to send calls to the

correct target instance:

// C++
extern "C"
void entry(int id, unsigned char cmd, int addr, int* data)
{
 bus_t tx;
 tx.cmd = cmd;
 tx.addr = addr;
 tx.data = *data;
 scwrap::instance[id]->m_scmod->execute(&tx);
 *data = tx.data;
}

extern "C"
const char* get_path(int id)
{
 return scwrap::instance[id]->name();
}

On the SystemVerilog side, the id is passed to the DPI call in order

to differentiate between the SystemC module instances. A get_path()

DPI function is provided so that the SystemVerilog test bench can

identify which id corresponds to which instance. The test bench can

maintain a mapping between hierarchical paths and ids to make DPI

calls more convenient:

// SystemVerilog
import "DPI-C" function void entry(
 input int id, input byte cmd, input int addr, inout int data);
import "DPI-C" function string get_path(input int id);

int path_to_id[string];
…
virtual function void end_of_elaboration;
 path_to_id[get_path(1)] = 1;
 path_to_id[get_path(2)] = 2;
endfunction

Unfortunately, differences between simulator implementations cause

portability issues again. The SystemC name() method returns the

hierarchical path in a different format in each case! Conditional

compilation can be used to patch up the differences:

 Copyright © 2010 by Doulos. 7

// SystemVerilog
`ifdef CADENCE
 id = path_to_id["top.m_hier.m_scwrap_1"];
`endif
`ifdef MENTOR
 id = path_to_id["/top/m_hier/m_scwrap_1"];
`endif
`ifdef SYNOPSYS
 id = path_to_id["top_m_hier_m_scwrap_1"];
`endif
entry(id, tx.cmd, tx.addr, tx.data);

What can one say?

Using this approach, with minor use of conditional compilation it

was possible once again to use precisely the same DPI calls and C++

code with an OVM test bench and simulators from Cadence and

Mentor, and with a VMM test bench and the Synopsys simulator.

7.4 DPI Guidelines: Timed SystemC Models

As mentioned at the outside, one premise of this paper was the

requirement to integrate untimed reference models into a

SystemVerilog test bench. However, as an extension, we now

consider timed SystemC models.

It is increasingly the case that timed SystemC models conform to the

OSCI TLM-2.0 standard. As described above, TLM-2.0 supports

both blocking and non-blocking transport interfaces for processing

regular transactions. Even models that do not conform to the TLM-

2.0 standard typically use these same concepts.

To handle a timed SystemC model, because the DPI call itself must

not be blocked by the SystemC scheduler (as discussed above), the

response may need to be returned at a later time using a separate DPI

call from SystemC to SystemVerilog. Hence we require both DPI

imports and DPI exports between SystemVerilog and SystemC.

The approach we have adopted is to use two DPI calls, a DPI import

function that sends a request to the SystemC model (by passing small

types as function arguments), and a DPI export function that sends a

response back to the SystemVerilog test bench at a later time (again

by passing small types as function arguments). Both can be simple

non-blocking function calls. This mechanism has similarities with

the TLM-2.0 non-blocking interface, and like that interface, is able to

support multiple simultaneous pipelined transactions. However, our

approach does not require that either the SystemVerilog or the

SystemC model be TLM-2.0-compliant.

As a purely practical matter, linking SystemVerilog and SystemC

applications with function calls in both directions seems best handled

by switching to “DPI-SC” for Cadence and Mentor, while “DPI-C”

is sufficient for Synopsys. As mentioned above, currently there are

portability issues when making SystemC method calls using “DPI-

SC”, but the implementation of global C++ function calls through the

“DPI-SC” interface (or “DPI-C” for Synopsys) seem to be robust for

all simulators. Synopsys users also have the option of using the TLI,

but a premise of this paper is the desire to create portable code and to

minimize reliance on vendor-specific features.

To call global C++ functions at “DPI-SC” imports requires the use of

vendor-specific function registration macros as follows:

// SystemC
#ifdef CADENCE
 #define NCSC_INCLUDE_TASK_CALLS
 #define CDN_OR_MEN
#endif

#ifdef MENTOR
 #define MTI_BIND_SC_MEMBER_FUNCTION
 #include "sc_dpiheader.h"
 #define CDN_OR_MEN
#endif

// In module constructor
#ifdef MENTOR
 SC_DPI_REGISTER_CPP_FUNCTION(entry);
 SC_DPI_REGISTER_CPP_FUNCTION(get_path);
#endif

// At file scope
#ifdef CADENCE
 NCSC_REGISTER_DPI(entry)
 NCSC_REGISTER_DPI(get_path)
#endif

In order to call a DPI export function from C++, we need to set the

SystemVerilog scope. The programming interface to achieve this

(svGetScope, svSetScope) is part of the SystemVerilog language

standard. The scope can be determined from within the DPI import

function, and then used subsequently for the return call to the DPI

export:

// C++
static svScope calling_scope;

// DPI import
extern "C"
void entry(int id, char cmd, int addr, int* data) {
 …
 calling_scope = svGetScope();
}

…
{
 svSetScope(calling_scope);

 // Call to DPI export
 tx_done(id, tx->cmd, tx->addr, tx->data);
}

In order to deal with multiple outstanding transactions, the SystemC

wrapper module maintains a pool of SystemC threads. Incoming

transactions are allocated to the next free thread, and a thread

remains tied to a transaction instance until the response has been

returned to the SystemVerilog test bench and the transaction

completed. The thread can then be returned to the pool and reused.

Each thread has an associated event which, when notified, causes the

thread to resume and process a new incoming transaction.

Each incoming transaction is handled by the SystemC wrapper as

follows:

i. Assemble a new transaction object from the DPI arguments

ii. Associate the transaction object with the next free thread

iii. Notify an event to cause the thread to resume

Each SystemC thread executes the following loop:

 Copyright © 2010 by Doulos. 8

i. Wait for an event notification

ii. Call the blocking method of the SystemC module instance

to implement the functionality requested by the test bench

iii. On return from the blocking method call the DPI export,

unpacking any response attributes from the transaction and

passing them as DPI arguments

iv. Delete the transaction object

On the SystemVerilog side, the implementation of the DPI export

method can handle the response as follows:

i. Check the response attributes passed as arguments

ii. Use the id argument to tie up with the request, for example

by executing a Verilog event trigger ->done_ev[id]

iii. The transactor that generated the request can either block

waiting for the response or can generate several pipelined

transactions without waiting

There are some key points to note from the above: the actual DPI

calls are all non-blocking; the blocking method of the target SystemC

module is called from a SystemC thread in the wrapper; a thread pool

is needed to support multiple pipelined transactions; and an id

argument is used to map global DPI calls to the module hierarchy

(see the description of multiple instances above).

On the SystemVerilog side, the lifetime of each transaction will

extend beyond the call to the DPI import. Hence it is essential that

the test bench creates a new transaction object per transaction rather

than reusing the same object, which may still be “alive”. (This is

considered good practice anyway in both OVM and VMM.) The DPI

export call that indicates the completion of the transaction is

necessarily a global function call, rather than being a class method

call to the OVM component or VMM transactor that initiated the

transaction, so the programmer must contrive some mechanism to

communicate between the incoming DPI call and the initiator, based

on the id argument that is common to the outgoing and incoming

DPI calls. From the SystemVerilog side, the incoming DPI export

call is effectively asynchronous with respect to the operation of the

test bench. The initiating component/transactor can either suspend

until it is notified of the completion of the transaction, or can

continue to generate new transactions.

Garbage collection needs to be considered. Garbage collection in

SystemVerilog is implicit, but on the C++ side the lifetime of

transaction objects needs to be carefully thought through such that

objects can be either deleted or re-used when they die.

Once again, with this approach it was possible to use precisely the

same C++ code with an OVM test bench and simulators from

Cadence and Mentor, and with a VMM test bench and the Synopsys

simulator. On the SystemVerilog side, the DPI calls differed only in

that Cadence and Mentor used “DPI-SC” and Synopsys “DPI-C”.

8. Conclusions

We set out to find a way of using the SystemVerilog DPI to call

C/C++ and SystemC reference models in a way that was simple,

robust, and portable between simulators. On the whole, the results

were very positive. We found an approach by which we were able to

create a single body of C/C++ or SystemC code that is portable

between all current simulators, albeit by imposing some restrictions

on the DPI features used.

It is true that the lowest common denominator between DPI

implementations uncovered by this work is substantially below the

full level of capability of any of the individual simulators considered,

and also true that this level will change over time as vendors improve

their implementations. Users must make their own decision

concerning the value of portability between simulators versus

exploiting the full capabilities of their chosen vendor.

8.1 Summary of the Common Approach

i. Pass only small types and logic vectors as DPI arguments,

that is, do not pass user-defined structs, open arrays, or

multi-dimensional arrays

ii. For untimed reference models (C/C++ or SystemC), use

“DPI-C” imports only, that is, do not use DPI exports or

“DPI-SC”

iii. For SystemC reference models, use a SystemC wrapper

module that can assemble or convert function arguments

and re-direct incoming DPI calls to the appropriate

SystemC module instance

iv. Have the DPI calls identify the target SystemC module

instance using an id argument

v. For timed SystemC models, use “DPI-SC” (Cadence and

Mentor) or “DPI-C” (Synopsys)

vi. For timed SystemC models, have the SystemC wrapper

maintain a pool of SystemC threads to call any blocking

SystemC method

vii. For timed SystemC models, have the SystemC wrapper

call a DPI export on completion of the transaction

viii. Have all DPI calls in either direction be non-blocking

ix. Use conditional compilation as necessary to handle

differences in directives, headers, macro names, and

hierarchical path names between simulators

8.2 Example Files

Example files to accompany this paper can be downloaded from

www.doulos.com/knowhow/systemverilog/

9. References

[1] IEEE Std 1800-2005 “IEEE Standard for SystemVerilog – Unified

Hardware Design, Specification, and Verification Language,”

[2] IEEE Std 1666-2005 “IEEE Standard SystemC Language Reference

Manual”

[3] OSCI TLM-2.0 Language Reference Manual, version JA32, 2009

[4] Bergeron, Cerny, Hunter and Nightingale. 2005 Verification Methodology

Manual for SystemVerilog. Springer ISBN-10: 0-387-25538-9

[5] VMM Standard Library User Guide, Version 1.2, November 2009

[6] OVM Class Reference, Version 2.0.2, June 2009

 Copyright © 2010 by Doulos. 9

	Introduction
	2. Goals and Assumptions
	3. Test Bench and Reference Model
	4. Transactions in TLM-1.0 and TLM-2.0
	5. Using the DPI with C
	6. Calling an Untimed C/C++ Reference Model
	7. Using the DPI with SystemC
	8. Conclusions
	9. References

