
1

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

Often I am asked by students how to accomplish various tasks using SystemVerilog

coverage. For example, students often ask, “How can I use my coverage to

feedback into my random constraints?” So the purpose of this presentation is to

provide a few practical tips and tricks using SystemVerilog coverage as well as a

few gottchas to avoid.

1
Copyright © 2009 by Doulos. All Rights Reserved

A Practical Look

@ SystemVerilog

Coverage

Practical Tips, Tricks, and

Gottchas using Functional
Coverage in SystemVerilog

Doug Smith
doug.smith@doulos.com

2

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

Let’s first take a quick look at the 2 types of functional coverage provided by

SystemVerilog.

2
Copyright © 2009 by Doulos. All Rights Reserved

CONTENTS

Types of SystemVerilog Coverage

Tips, Tricks, & Gottchas

Summary

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

3

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

Functional coverage comes in 2 flavors in SystemVerilog. The first type, cover

properties, uses the same temporal syntax used by SystemVerilog assertions (SVA).

This temporal syntax is used by properties and sequences, which can either be used

by the SystemVerilog assert, assume, or cover statements. The advantage of this is

that for the same amount of effort you get double the mileage--i.e., the same

properties can be used for both assertions and collecting functional coverage.

Unfortunately, cover properties can only be placed in structural code (i.e., modules,

programs, or interfaces) and can not be used in class-based objects.

The second type of functional coverage is a covergroup. Covergroups record the

number of occurrences of various values specified as coverpoints. These

coverpoints can be hierarchically referenced by your testcase or testbench so that

you can query whether certain values or scenarios have occurred. They also provide

a means for creating cross coverage (more on that in a subsequent slide). Unlike

cover properties, covergroups may be used in both class-based objects or structural

code.

3
Copyright © 2009 by Doulos. All Rights Reserved

Cover Property vs Covergroup

• Cover properties …

• Use SVA temporal syntax

• Can use the same properties that assertions use

• Not accessible by SV code

• Placeable in structural code only

• Covergroups …

• Record values of coverpoints

• Provide functional crosses of coverpoints

• Accessible by SV code and testcases

• Placeable in both objects and structural code

4

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

4
Copyright © 2009 by Doulos. All Rights Reserved

Cover Property

• Simulators count the number of time the property holds

• Display information in waveforms and in a report

cover property (@(posedge clk)

 $rose(req) |=> ((req && ack)[*0:$] ##1 !req));

cover property (@(posedge clk)

 $rose(req) |=> ((req && ack)[*0:$] ##1 !req));

clk

req

ack

0 1
Tool dependent displayTool dependent display

Here is an example of a cover property. Notice, the cover property uses the same

temporal syntax as SVA. This example can be read as:

“When req rises, that implies 1 cycle later that both req and ack are high for 0 or

more cycles followed by a cycle of req low”

The simulator keeps track of how many times this sequence occurs and you can

view it in your simulator waveform or coverage report.

5

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

5
Copyright © 2009 by Doulos. All Rights Reserved

module InstructionMonitor (

 input bit clk, decode,

 input logic [2:0] opcode,

 input logic [1:0] mode);

 covergroup cg

 @(posedge clk iff decode);

 coverpoint opcode;

 coverpoint mode;

 endgroup

 cg cg_Inst = new;

 ...

 ...

endmodule: InstructionMonitor

module InstructionMonitor (

 input bit clk, decode,

 input logic [2:0] opcode,

 input logic [1:0] mode);

 covergroup cg

 @(posedge clk iff decode);

 coverpoint opcode;

 coverpoint mode;

 endgroup

 cg cg_Inst = new;

 ...

 ...

endmodule: InstructionMonitor

7

14

3

9

000 001 010 011 100 101 110 111

0

5

10

6

13

7

18 16

00 01 10 11

coverage holecoverage hole

coverage counts 2-state valuescoverage counts 2-state values

Covergroups

• Plan for all the interesting cases, then count them during
simulation

Here is an example of a covergroup. When defining a covergroup, you need to give

it a name (“cg” in this example) and optionally provide a sampling event, which in

this case is the positive edge of “clk” qualified by the decode signal. In other

words, then a valid instruction occurs (“decode” asserted), then sample the values

on the opcode and mode signals.

Since opcode has 23 = 8 possible values, 8 bins or buckets will be created to keep

track of the number of times each value occurs. For the mode input, there are 22=4

possible values so 4 bins will be created.

Defining the covergroup alone will not start the coverage collection. Rather, a

covergroup needs to be instantiated using the “new” operator and given an instance

name. Inside a class, an instance name is not required and the new operator is

called on the covergroup instead of the class constructor.

6

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

6
Copyright © 2009 by Doulos. All Rights Reserved

Cross Coverage

covergroup cg ...

 coverpoint opcode;

 coverpoint mode;

 cross opcode, mode;

endgroup

covergroup cg ...

 coverpoint opcode;

 coverpoint mode;

 cross opcode, mode;

endgroup

000 001 010 011 100 101 110 111

0

7

3
1 0 1

4
2

0

10

0

0
10

11

00

01

opcode

m
o
d
e

0

0

0

0

0

0

22

22

3

3 3 3

1 1 1 1

11

Count all combinations
of crossed coverpoints.
Richer information, but
needs careful design.

Where coverage starts to become really interesting is when we cross different

coverpoints to see when different values occur at the same time. In this example,

we are crossing all occurrences of the different opcodes occurring at the same time

as the four possible mode values. The zeros in the matrix reveal coverage holes--

values that have either not been testing, generated, or possible values that are

invalid or undefined.

7

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

That is a quick overview of SystemVerilog coverage. Now let’s have a look at

some tips, tricks, and gottchas to avoid when using SystemVerilog functional

coverage.

7
Copyright © 2009 by Doulos. All Rights Reserved

CONTENTS

Types of SystemVerilog Coverage

Tips, Tricks, Gottchas

Summary

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

8

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

8
Copyright © 2009 by Doulos. All Rights Reserved

Tip # 1: Take advantage of shorthand
notation

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

9

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

9
Copyright © 2009 by Doulos. All Rights Reserved

enum { Idle, Standby, Go1, Go2 } states;

covergroup cg_FSM @(posedge Clock);

 coverpoint State {

 bins valid_states[] = { Idle, Standby, Go1, Go2 };

 bins valid_trans = (Idle => Go1 => Go2 => Idle),

 (Idle => Standby => Idle);

 // Shorthand notation ...

 bins reset_trans = (Go1, Go2, Standby => Idle);

 bins idle_5 = (Idle[*5] => Go1); // 5 Idles then Go1

 bins go1_range = (Go1 [-> 5:7]); // 5 to 7 non-consecutively

 wildcard bins idle_trans = (2’bx1 => Idle);

 }

endgroup

enum { Idle, Standby, Go1, Go2 } states;

covergroup cg_FSM @(posedge Clock);

 coverpoint State {

 bins valid_states[] = { Idle, Standby, Go1, Go2 };

 bins valid_trans = (Idle => Go1 => Go2 => Idle),

 (Idle => Standby => Idle);

 // Shorthand notation ...

 bins reset_trans = (Go1, Go2, Standby => Idle);

 bins idle_5 = (Idle[*5] => Go1); // 5 Idles then Go1

 bins go1_range = (Go1 [-> 5:7]); // 5 to 7 non-consecutively

 wildcard bins idle_trans = (2’bx1 => Idle);

 }

endgroup

Shorthand notation

Standby, Go2 => IdleStandby, Go2 => Idle

Go1=>Idle, Go2=>Idle, Standby =>IdleGo1=>Idle, Go2=>Idle, Standby =>Idle

IdleIdle Go1Go1

Go2Go2

StandbyStandby

SystemVerilog defines many concise ways to define the coverage that you are

looking for. Here’s an example of a state machine and we are going to define

transitional coverage--i.e., a record of the transitions from one state to the next.

Notice, to define transitional coverage, use the (=>) syntax.

Some shorthand notations include:

(1) S1, S2, S3 => N1, N2

 which translates into

 S1=>N1, S1=>N2, S2=>N1, S2=>N2, S3=>N1, S3=>N2

(2) [*N] - repetition operator

(3) [->N:M] - non-consecutive operator (i.e., so many occurrences over an

indeterminate period of time)

(4) wildcards … ? - multiple matches

10

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

10
Copyright © 2009 by Doulos. All Rights Reserved

Tip # 2: Add covergroup arguments for
more flexibility

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

11

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

11
Copyright © 2009 by Doulos. All Rights Reserved

Arguments

covergroup cg (ref int v, input string comment);

 coverpoint v;

 option.per_instance = 1;

 option.weight = 5;

 option.goal = 90;

 option.comment = comment;

endgroup

int a, b;

cg cg_inst1 = new(a, "This is cg_inst1 - variable a");

cg cg_inst2 = new(b, "This is cg_inst2 - variable b");

covergroup cg (ref int v, input string comment);

 coverpoint v;

 option.per_instance = 1;

 option.weight = 5;

 option.goal = 90;

 option.comment = comment;

endgroup

int a, b;

cg cg_inst1 = new(a, "This is cg_inst1 - variable a");

cg cg_inst2 = new(b, "This is cg_inst2 - variable b");

Same definition - multiple usesSame definition - multiple uses

Covergroups can also include arguments (using the same syntax as functions or

tasks). In this example, we have added an argument for “v” so that we can pass into

the covergroup whatever signal or variable that we want to cover. Notice, we pass

the argument by reference by using the “ref” keyword. Likewise, we can pass other

arguments like strings that we can use in the covergroup options.

Once we have added arguments, now we can create multiple instances and pass into

them the signal/variable we want to cover by passing them in the call to “new”.

This allows us to reuse your covergroup definitions.

12

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

12
Copyright © 2009 by Doulos. All Rights Reserved

• Coverpoints allow the use of hierarchical references ...

• but references can also be passed as arguments ...

covergroup cg;

 coverpoint testbench.covunit.a;

 coverpoint $root.test.count;

 coverpoint testbench.covunit.cg_inst.cp_a;

endgroup

covergroup cg;

 coverpoint testbench.covunit.a;

 coverpoint $root.test.count;

 coverpoint testbench.covunit.cg_inst.cp_a;

endgroup

covergroup cg (ref logic [7:0] a, ref int b);

 coverpoint a;

 coverpoint b;

endgroup

cg cg_inst = new(testbench.covunit.a, $root.test.count);

covergroup cg (ref logic [7:0] a, ref int b);

 coverpoint a;

 coverpoint b;

endgroup

cg cg_inst = new(testbench.covunit.a, $root.test.count);

Equivalent types requiredEquivalent types required

Hierarchical references

Coverpoint refs not allowedCoverpoint refs not allowed

Covergroups can contain coverpoints to hierarchical references, which can be quite

useful. However, they cannot be references to other coverpoints as the top example

illustrates. Unfortunately, when we start using hardcoded hierarchical references,

our covergroup (and consequently, our testbench) is not as flexible or reusable as it

could be. Instead, we could define arguments to our covergroup and then pass

hierarchical references into the covergroup when it is instantiated. The instantiation

could be done in a testcase or elsewhere so that now the covergroup is much more

flexible.

13

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

13
Copyright © 2009 by Doulos. All Rights Reserved

Tip # 3: Utilize coverage options

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

14

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

14
Copyright © 2009 by Doulos. All Rights Reserved

Type options

• Type options apply to the entire covergroup type

covergroup cg @(posedge clk);

 type_option.weight = 5; // Weight in calculation

 type_option.goal = 90; // Percentage of coverage

 type_option.strobe = 1; // Sample in postponed region

 cp_a: coverpoint a {

type_option.comment = comment;

 };

 coverpoint b;

endgroup

covergroup cg @(posedge clk);

 type_option.weight = 5; // Weight in calculation

 type_option.goal = 90; // Percentage of coverage

 type_option.strobe = 1; // Sample in postponed region

 cp_a: coverpoint a {

type_option.comment = comment;

 };

 coverpoint b;

endgroup

cg::type_option.goal = 100;

cg::cp_a::type_option.weight = 80;

cg::type_option.goal = 100;

cg::cp_a::type_option.weight = 80;

Requires constant expressionsRequires constant expressions

Covergroups have many options that can be specified. Type options apply to the

entire covergroup type and can only be set when the covergroup is declared or by

using the scope resolution operator (::). Type options are specified using the

type_option covergroup member. There are 4 type options--weight, goal, strobe,

and comment--where

weight = weight of coverage in the coverage calculation

goal = percentage of coverage to reach (this determines whether you see a red,

amber, or green color in your coverage report)

strobe = sample the coverage values once everything is stable right before moving

on to the next simulation time step (i.e., the postponed simulator region)

comment = string comment

15

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

15
Copyright © 2009 by Doulos. All Rights Reserved

covergroup cg @(posedge clk);

 option.per_instance = 1; // Turns on these options

 option.weight = 5; // Weight in coverage calculation

 option.goal = 90; // Percentage of at_least value

 option.at_least = 10; // Number of occurrences to reach

 option.comment = comment;

 a: coverpoint a { option.auto_bin_max = 128; };

 b: coverpoint b { option.weight = 50; };

endgroup

covergroup cg @(posedge clk);

 option.per_instance = 1; // Turns on these options

 option.weight = 5; // Weight in coverage calculation

 option.goal = 90; // Percentage of at_least value

 option.at_least = 10; // Number of occurrences to reach

 option.comment = comment;

 a: coverpoint a { option.auto_bin_max = 128; };

 b: coverpoint b { option.weight = 50; };

endgroup

cg g1 = new;

g1.option.goal = 100;

g1.a.option.weight = 80;

cg g1 = new;

g1.option.goal = 100;

g1.a.option.weight = 80;

These options require per_instance = 1These options require per_instance = 1

Per instance options

Instance can be usedInstance can be used

In general, coverage is cumulative unless you specify the per_instance option.

When this option is set, then coverage is collected separately for each instance of

the covergroup. There are many per_instance options as shown above. One worth

pointing out is the at_least option. This option specifies the number of occurrences

to see covered and is used to determine if the covergroup goal has been met.

Notice, per_instance options are specified using the “option” covergroup member

and most can be used with covergroups, coverpoints, and crosses.

16

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

16
Copyright © 2009 by Doulos. All Rights Reserved

Type vs Instance Coverage

Here is an example of the difference between type and per_instance coverage as

shown in a simulator.

17

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

17
Copyright © 2009 by Doulos. All Rights Reserved

Trick # 1: Combine cover properties
with covergroups

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

18

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

18
Copyright © 2009 by Doulos. All Rights Reserved

class testbenchclass testbench

class monitorclass monitor

Example

class collectorclass collector

Coverage registers

module
cpu

module
cpu

module
sram

module
sram

module
rom

module
rom

interface bus_ifinterface bus_if

CovergroupsCovergroups

Cover PropertiesCover Properties

In this simple example, the CPU, ROM, and SRAM are connected using a structural

SystemVerilog interface called bus_if. Because it is structural, we can place cover

properties in the interface and use it to detect when a sequence occurs. When the

sequence happens, the bus transaction can be thrown over to the class-based

environment by the cover property where it can be recorded in a covergroup

structure. Once recorded by the covergroup, interesting things like cross coverage

can be done with it as well as gathering coverage feedback for test stimulus. This

example will show how to combine the two together.

19

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

19
Copyright © 2009 by Doulos. All Rights Reserved

sequence cond_jump;

 logic [3:0] opcode;

 logic [ww-1:0] jump_instr_pc;

 logic [ww-1:0] jump_target_pc;

 @(posedge bus_if.clk)

 first_match(

 fe

 ##1

 ((datar[15:12] == jzero_op ||

 datar[15:12] == jneg_op), opcode = datar[15:12],

 jump_instr_pc = addr)

 ##[1:$]

 fe

 ##1

 (1, jump_target_pc = addr,

 cover_jump(opcode, jump_instr_pc, jump_target_pc)

));

endsequence: cond_jump

cover property (cond_jump);

sequence cond_jump;

 logic [3:0] opcode;

 logic [ww-1:0] jump_instr_pc;

 logic [ww-1:0] jump_target_pc;

 @(posedge bus_if.clk)

 first_match(

 fe

 ##1

 ((datar[15:12] == jzero_op ||

 datar[15:12] == jneg_op), opcode = datar[15:12],

 jump_instr_pc = addr)

 ##[1:$]

 fe

 ##1

 (1, jump_target_pc = addr,

 cover_jump(opcode, jump_instr_pc, jump_target_pc)

));

endsequence: cond_jump

cover property (cond_jump);

Note: sample local variablesNote: sample local variables

addr

datar

fe

Cover Property

• Uses sequence/property in interface

This slide illustrates a sequence used to detect a jump instruction, grab the

instruction address, and grab the following target jump address. Using

SystemVerilog’s temporal syntax, this sequence can be using written instead of

writing a more complicated state machine in the class-based monitor. Local

variables are used in the sequence to store the opcode and addresses as they occur

and then send them to the class-based monitor using the function cover_jump(). The

cover property syntax is used to create a process that waits for the sequence to

occur.

20

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

20
Copyright © 2009 by Doulos. All Rights Reserved

Transfer Coverage to Monitor

interface basic_bus_if;

 jump_data_t jump_data;

 bit jump_trig = 0;

 function void cover_jump(logic [3:0] op,

 logic [ww-1:0] jump_instr_pc, jump_target_pc);

 jump_data = {op, jump_instr_pc, jump_target_pc};

 jump_trig = ~jump_trig;

 endfunction

 ...

interface basic_bus_if;

 jump_data_t jump_data;

 bit jump_trig = 0;

 function void cover_jump(logic [3:0] op,

 logic [ww-1:0] jump_instr_pc, jump_target_pc);

 jump_data = {op, jump_instr_pc, jump_target_pc};

 jump_trig = ~jump_trig;

 endfunction

 ...
class monitor extends ...;

 task process_jump();

 forever begin

 jump_data_t t; jump_xact tr;

 @(m_bus_if.mon_xact.jump_trig)

 t = m_bus_if.mon_xact.jump_data;

 tr = new(t.opcode, t.jump_instr_pc, t.jump_target_pc);

 cov_collector.write(tr); // Send to covergroup

 end

 endtask: process_jump

 ...

class monitor extends ...;

 task process_jump();

 forever begin

 jump_data_t t; jump_xact tr;

 @(m_bus_if.mon_xact.jump_trig)

 t = m_bus_if.mon_xact.jump_data;

 tr = new(t.opcode, t.jump_instr_pc, t.jump_target_pc);

 cov_collector.write(tr); // Send to covergroup

 end

 endtask: process_jump

 ...

typedef struct packed {

 logic [3:0] opcode;

 logic [ww-1:0] jump_instr_pc,

 logic [ww-1:0] jump_target_pc;

} jump_data_t;

typedef struct packed {

 logic [3:0] opcode;

 logic [ww-1:0] jump_instr_pc,

 logic [ww-1:0] jump_target_pc;

} jump_data_t;

Bus monitor taskBus monitor task

Interface functionInterface function

The cover_jump() function also lives in the interface along with the sequence. It is

a simple function that simply takes in the opcode, instruction address, and target

address and packs them into a structure. A trigger flag called jump_trig is used to

signify to the monitor that the sequence has occurred. A flag is used instead of an

event to avoid simulator issues with events through virtual interfaces.

The class-based monitor waits on the jump_trig toggling to occur. Then it grabs the

packed structure, loads it into a transaction, and then writes it over to the coverage

collector using its write() function.

21

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

21
Copyright © 2009 by Doulos. All Rights Reserved

Record Coverage with Covergroup

class collector extends ...;

 ...

 virtual function void write(input jump_xact t);

 m_cov.opcode = t.opcode;

 m_cov.jump_instr_pc = t.jump_instr_pc;

 m_cov.jump_target_pc = t.jump_target_pc;

 m_cov.jump_delta = m_cov.jump_target_pc - m_cov.jump_instr_pc - 1;

 m_cov.cov_jump.sample();

 endfunction

 ...

class collector extends ...;

 ...

 virtual function void write(input jump_xact t);

 m_cov.opcode = t.opcode;

 m_cov.jump_instr_pc = t.jump_instr_pc;

 m_cov.jump_target_pc = t.jump_target_pc;

 m_cov.jump_delta = m_cov.jump_target_pc - m_cov.jump_instr_pc - 1;

 m_cov.cov_jump.sample();

 endfunction

 ...

covergroup cov_jump;

 coverpoint jump_delta {

 bins no_jump = { 0 };

 bins short_jump_fwd = { [1:15] };

 bins long_jump_fwd = { [16:2**ww-1] };

 bins short_jump_back = { [-15:-1] };

 bins long_jump_back = { [-2**ww+1:-16] };

 option.at_least = 4;

 }

endgroup: cov_jump

covergroup cov_jump;

 coverpoint jump_delta {

 bins no_jump = { 0 };

 bins short_jump_fwd = { [1:15] };

 bins long_jump_fwd = { [16:2**ww-1] };

 bins short_jump_back = { [-15:-1] };

 bins long_jump_back = { [-2**ww+1:-16] };

 option.at_least = 4;

 }

endgroup: cov_jump

In the coverage collector class, the write function receives the transaction from the

monitor. It then calculates the jump address distance and invokes the covergroup’s

built-in sample() method. The covergroup snapshots the jump_delta and places the

values into the corresponding bins.

22

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

22
Copyright © 2009 by Doulos. All Rights Reserved

Advantages

• Cover property ...

• Protocol defined in the interface (everything kept together)

• Protocol defined using temporal syntax--not a custom FSM

• Covergroup …

• Provides additional coverage options

• Provides cross coverage

• Accessible by testbench or testcase (coverage feedback)

Using this approach allows you to have the best of both worlds. The temporal

syntax can be used to create the FSM to monitor the bus protocol, and then

covergroups can be used in the class-based environment to record the information.

Once the information is in the covergroup, then cross coverage can be created or

coverage used for feedback into test cases or the testbench.

23

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

23
Copyright © 2009 by Doulos. All Rights Reserved

Trick #2: Create coverpoints for
querying bin coverage

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

24

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

24
Copyright © 2009 by Doulos. All Rights Reserved

initial

 repeat (100) @(posedge clk) begin

 cg_inst.sample;

 cov = cg_inst.get_coverage; // Covergroup

 if (cov > 90.0) cg_inst.stop;

 end

initial

 repeat (100) @(posedge clk) begin

 cg_inst.sample;

 cov = cg_inst.get_coverage; // Covergroup

 if (cov > 90.0) cg_inst.stop;

 end

// Weight randomness to hit uncovered coverpoints

randcase

 (100 - $rtoi(cg_inst.a.get_coverage)) : ...;

 (100 - $rtoi(cg_inst.b.get_coverage)) : ...;

 (100 - $rtoi(cg_inst.c.get_coverage)) : ...;

 ...

endcase

// Weight randomness to hit uncovered coverpoints

randcase

 (100 - $rtoi(cg_inst.a.get_coverage)) : ...;

 (100 - $rtoi(cg_inst.b.get_coverage)) : ...;

 (100 - $rtoi(cg_inst.c.get_coverage)) : ...;

 ...

endcase

Querying coverage

• get_coverage() returns % covered (as a real number) on
covergroups and coverpoints

Built-in to all covergroups, coverpoints, and crosses is a function called

get_coverage(). Get_coverage() returns a real number of the percentage of coverage

that has been covered.

In the top example, the sample() method is being used to manually sample the

coverage values. The coverage percentage is then used to determine if the goal of

90.0% has been met and if so then stop collecting coverage.

In the bottom example, the current percentage of coverage is being used to

determine the weighting in the randcase statement. The function $rtoi() turns the

coverage percentage into an integer value so an integer expression can be calculated

for the randcase weightings.

25

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

25
Copyright © 2009 by Doulos. All Rights Reserved

covergroup cg;

 coverpoint i {

 bins zero = { 0 };

 bins tiny = { [1:100] };

 bins hunds[3] = { 200,300,400,500,600,700,800,900 };

 }

endgroup

covergroup cg;

 coverpoint i {

 bins zero = { 0 };

 bins tiny = { [1:100] };

 bins hunds[3] = { 200,300,400,500,600,700,800,900 };

 }

endgroup

Querying bin coverage

• get_coverage() does not work on bins

cov = cg_inst.i.zero.get_coverage();cov = cg_inst.i.zero.get_coverage(); Not allowedNot allowed

SystemVerilog does not allow querying coverage on individual coverage bins. This

is unfortunate, especially if coverage feedback is needed to know which transaction

values have occurred since that level of detail would be specified using specific

coverage bins.

26

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

26
Copyright © 2009 by Doulos. All Rights Reserved

covergroup instr_cg;

 op_nop :

 coverpoint instr_word[15:12] { bins op = { nop_op }; }

 op_load :

 coverpoint instr_word[15:12] { bins op = { load_op };}

 op_store :

 coverpoint instr_word[15:12] { bins op = { str_op }; }

 op_move :

 coverpoint instr_word[15:12] { bins op = { move_op }; }

 ...

endgroup

covergroup instr_cg;

 op_nop :

 coverpoint instr_word[15:12] { bins op = { nop_op }; }

 op_load :

 coverpoint instr_word[15:12] { bins op = { load_op };}

 op_store :

 coverpoint instr_word[15:12] { bins op = { str_op }; }

 op_move :

 coverpoint instr_word[15:12] { bins op = { move_op }; }

 ...

endgroup

Create coverpoints for each bin

• Now get_coverage() can be used ...

cov = cg_inst.op_nop.get_coverage();cov = cg_inst.op_nop.get_coverage();

Fortunately, there is a workaround to not being able to query coverage on an

individual bin. Instead, each value of interest can be turned into a unique

coverpoint so that the get_coverage() function can be called on each value of

interest. This syntax is somewhat cumbersome and tedious, but it accomplishes this

goal, which is particularly needed to feedback information into random constraints

(see the next trick).

27

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

27
Copyright © 2009 by Doulos. All Rights Reserved

Trick #3: Direct stimulus with coverage

feedback

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

28

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

28
Copyright © 2009 by Doulos. All Rights Reserved

Randomize using dist

• The dist operator accepts dynamically changing random
weightings

int weight_nop = 1,

weight_load = 1,

weight_store = 1,

weight_add = 1,

...;

constraint bias_opcodes {

opcode dist {

nop_op := weight_nop,

load_op := weight_load,

store_op := weight_store,

add_op := weight_add,

...

};

}

int weight_nop = 1,

weight_load = 1,

weight_store = 1,

weight_add = 1,

...;

constraint bias_opcodes {

opcode dist {

nop_op := weight_nop,

load_op := weight_load,

store_op := weight_store,

add_op := weight_add,

...

};

}

1800 LRM: dist accepts
integral expressions

1800 LRM: dist accepts
integral expressions

Some simulators only support variablesSome simulators only support variables

Often times, engineers want to feedback coverage information into their constrained

random stimulus generation. Fortunately, SystemVerilog provides a constraint

option that accepts a distribution weighting called “dist”. With the dist constraint,

you can specify the probably that a particular value will occur.

This weighting can be an expression except not all simulators support expressions.

So variables can be created for each value’s weighting. In the example above, all

values have an equal weighting of 1 at simulation startup.

As simulation progresses, these value weightings will be updated to affect the

randomization of the opcode stimulus.

29

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

29
Copyright © 2009 by Doulos. All Rights Reserved

Use pre_randomize to set weights

• pre_randomize() sets the weighting used by the dist

function int calc_weight(opcode_t op);

real cov;

case (op) // Grab coverage (see Trick #2)

nop_op: cov = covunit.cg.op_nop.get_coverage;

load_op: cov = covunit.cg.op_load.get_coverage;

store_op: cov = covunit.cg.op_store.get_coverage;

...

endcase

calc_weight = 100 - $rtoi(cov) + 1;

endfunction : calc_weight

function void pre_randomize();// Set dist weighting

weight_nop = calc_weight(nop_op);

weight_load = calc_weight(load_op);

weight_store = calc_weight(store_op);

weight_add = calc_weight(add_op);

...

endfunction

function int calc_weight(opcode_t op);

real cov;

case (op) // Grab coverage (see Trick #2)

nop_op: cov = covunit.cg.op_nop.get_coverage;

load_op: cov = covunit.cg.op_load.get_coverage;

store_op: cov = covunit.cg.op_store.get_coverage;

...

endcase

calc_weight = 100 - $rtoi(cov) + 1;

endfunction : calc_weight

function void pre_randomize();// Set dist weighting

weight_nop = calc_weight(nop_op);

weight_load = calc_weight(load_op);

weight_store = calc_weight(store_op);

weight_add = calc_weight(add_op);

...

endfunction Beware!! No longer truly random!Beware!! No longer truly random!

Before randomize() is called, a method called pre_randomized() is invoked. So we

can write a pre_randomize() function that will update the weightings to be used in

our dist constraint.

The calc_weight() function is called for each opcode and the coverage updated by

grabbing the current coverage and subtracting it from 100. Using this formula,

opcodes that have been seen a lot will have a small weight; whereas, unseen

opcodes will have a very high probability of being selected next. The +1 is added

for the scenario when an opcode has been 100% covered since a weighting of 0

would remove the possibility of that opcode from happening again. This way all

opcodes continue to be selected.

The point of randomization is to find hard-to-find corner cases due to all the

randomization. Just beware that when you constrain your randomization like this

then it is no longer truly random, which may or may not be what you intended.

30

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

30
Copyright © 2009 by Doulos. All Rights Reserved

Gottcha #1: Avoid illegal_bins

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

31

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

31
Copyright © 2009 by Doulos. All Rights Reserved

illegal_bins

logic [2:0] opcode;

logic signed [15:0] jump_distance;

covergroup cg @(posedge clk iff decode);

 coverpoint opcode {

 bins move_op[] = { 3'b000, 3'b001 };

 bins ALU_op = {[3'b010:3'b011],[3'b101:3'b110]};

 bins jump_op = {3'b111};

 illegal_bins unused_op = {3'b100};

 }

Value
not counted

Value
not counted

load000

store001

add010

sub011

unused100

and101

shift110

jump111

Opcode table

Illegal bins can be used to remove unused or illegal values from the overall

coverage calculation.

32

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

32
Copyright © 2009 by Doulos. All Rights Reserved

Issues

• illegal_bins

• excludes values from a covergroup--that’s good

• throws errors--that’s bad!
** Error: Illegal range bin value='b1011
got covered. The bin counter for the bin
'\/covunit/cg_i.b.bad' is 362.

• Questions to consider:

• Should something passive throw errors?

• If used for checking, what happens if coverage is turned
off?

• Better option:

• write assertions and checkers for checking

• ignore_bins for coverage

While illegal_bins removes values from coverage calculations, it also throws errors.

Philosophically, you need to ask yourself the questions, (1) “Should a passive

component like a covergroup be actively throwing errors?” and (2) “If you rely on

the covergroup for checking, then what happens when you turn coverage off?”

If you really want to ignore values, then use ignore_bins. If you really want to

throw errors, then use an assertion or checker!

33

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

33
Copyright © 2009 by Doulos. All Rights Reserved

Gottcha #2: Avoid using default

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

34

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

34
Copyright © 2009 by Doulos. All Rights Reserved

bit [15:0] i;bit [15:0] i;

covergroup cg_Short @(posedge Clock);

 coverpoint i {

 bins zero = { 0 };

 bins tiny = { [1:100] };

 bins hunds[3] = { 200,300,400,500,600,700,800,900 };

 bins huge = { [1000:$] };

 ignore_bins ignore = { [501:599] };

 bins others[] = default;

 }

endgroup

covergroup cg_Short @(posedge Clock);

 coverpoint i {

 bins zero = { 0 };

 bins tiny = { [1:100] };

 bins hunds[3] = { 200,300,400,500,600,700,800,900 };

 bins huge = { [1000:$] };

 ignore_bins ignore = { [501:599] };

 bins others[] = default;

 }

endgroup

One bin for each other valueOne bin for each other value

Using default bins

default catches unplanned or invalid valuesdefault catches unplanned or invalid values

The keyword default is used as a catch-all for all other possible values for a

coverpoint that have not already been thrown into a bin. In the above example, the

others[] = default will create a bin for every value not specified by the bins

statements.

35

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

35
Copyright © 2009 by Doulos. All Rights Reserved

Issues (1)

• Use of default may crash your simulator:

** Fatal: The number of singleton values

exceeded the system limit of 2147483647 for

unconstrained array bin 'other' in Coverpoint

'a' of Covergroup instance '\/covunit/cg_i'.

• Do you really want to look at 2147483647 bins?

int a; // 232 values

covergroup cg ...;

coverpoint a { bins other[] = default; }

endgroup

int a; // 232 values

covergroup cg ...;

coverpoint a { bins other[] = default; }

endgroup

One bin for each valueOne bin for each value

At first glance, default would appear quite useful. However, there are 2 issues.

First, what if the coverpoint has a very large number of values? Some simulators

croak on the example above!

It also begs the question, do you really want to look at 2147483647 bins? Most

likely this is not what you intended.

36

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

36
Copyright © 2009 by Doulos. All Rights Reserved

Issues (2)

• default bins are not included in the coverage calculation!

covergroup cg @(posedge clk);

 cp_a : coverpoint a {

 bins a[4] = default;

 }

 cx_ab : cross cp_a, b;

endgroup

covergroup cg @(posedge clk);

 cp_a : coverpoint a {

 bins a[4] = default;

 }

 cx_ab : cross cp_a, b;

endgroup

No coverage!No coverage!

Therefore, no cross coverage!Therefore, no cross coverage!

Another issue with default is that it pulls those values out of the coverage

calculation. For example, suppose I wanted a shorthand way of taking all possible

values and dividing them into several bins. Then I want to cross those values with

another coverpoint. The obvious way to do this would be to use the default

statement as shown above.

The problem with this example is that the coverpoint cp_a will have no coverage

collected for it because it is using “default”. If the coverpoint has no coverage, then

my cross will have no coverage either!

37

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

37
Copyright © 2009 by Doulos. All Rights Reserved

Solution

• Avoid [] with default, or use with smaller variables with
fewer possible values

• Use wildcard or min/max ($) to catch remaining values

logic [7:0] a; // Fewer values

covergroup cg ...;

coverpoint a {

bins other = default; // One bin

}

endgroup

logic [7:0] a; // Fewer values

covergroup cg ...;

coverpoint a {

bins other = default; // One bin

}

endgroup

bins huge = { [1000:$] }; // Max values

wildcard bins a[4] = { 'b?0 }; // Even values

bins huge = { [1000:$] }; // Max values

wildcard bins a[4] = { 'b?0 }; // Even values

The solutions to these issues is (1) do not use [] with the default statement or

explicitly use ignore_bins, and (2) use $ or wildcard bins. The $ specifies min or

max possible values and wildcard allows you to specify wildcard patterns. So if you

want to capture all other possible values, you need to specify them using $ or

wildcard.

38

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

38
Copyright © 2009 by Doulos. All Rights Reserved

A Practical Look @ SystemVerilog
Coverage: Tips & Tricks

CONTENTS

Types of SystemVerilog Coverage

Tips, Tricks, & Gottchas

Summary

39

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

39
Copyright © 2009 by Doulos. All Rights Reserved

Summary

• Tip # 1: Take advantage of shorthand notation

• Tip # 2: Add covergroup arguments for more flexibility

• Tip # 3: Utilize coverage options

• Trick #1: Combine cover properties with covergroups

• Trick # 2: Create coverpoints for querying bin coverage

• Trick # 3: Direct stimulus with coverage feedback

• Gottcha # 1: Avoid illegal_bins

• Gottcha # 2: Avoid using default

40

A Practical Look @ SystemVerilog Coverage

Notes

Copyright © 2009 by DOULOS. All Rights Reserved

40
Copyright © 2009 by Doulos. All Rights Reserved

Any questions?Any questions?

