
Copyright © 2009 by Doulos. All rights reserved. 1

FPGA TechNote:
Asynchronous signals and

Metastability
This Doulos FPGA TechNote gives a brief overview of metastability as

it applies to the design of FPGAs.

The first section introduces metastability and gives links to resources.

The second part looks specifically at making calculations using typical

metastability data, and also at the automation of metastability

calculation that has recently been introduced in the Altera Quartus II

software.

A PDF version of this document, together with the code examples,

can be downloaded from our web site:

www.doulos.com/knowhow/fpga

Our KnowHow pages are often updated with new material – call back

soon!

Asynchronous Signals and Metastability

2 Copyright © 2009 by Doulos. All rights reserved.

Contents

Asynchronous Signals and Metastability 3

Introduction .. 4
Synchronous Design and Synchronization 4
Metastability .. 5
Metastability documentation ... 6

Calculation of Metastability .. 7
Increasing the MTBF ... 8
More than one asynchronous input .. 9

Practical Example .. 10
Circuit Description ... 10
Setting up Altera Quartus II .. 12
Using Altera Quartus II for Metastability 12

Conclusion ... 17
And Finally... ... 17

Copyright © 2009 by Doulos. All rights reserved. 3

Asynchronous
Signals and
Metastability

This introductory part of the TechNote introduces the problems we

aim to solve, and the available methods.

Asynchronous Signals and Metastability

4 Copyright © 2009 by Doulos. All rights reserved.

Introduction

Synchronous Design and Synchronization

Modern digital design is normally carried out using a synchronous

design methodology. A design consists of combinational logic and

edge-triggered flip-flops.

Combinational logic is logic such that the output of the logic is purely

a function of the steady-state values of the inputs – in other words it

has no memory.

Edge-triggered flip-flops are used to remember the state of a design.

They are triggered by one edge of a clock signal. As long as the input

to an edge-triggered flip-flop is available some time before the clock

edge (the setup time), the value on that input will be sampled

correctly.

Here’s a simplified diagram.

Copyright © 2009 by Doulos. All rights reserved. 5

Designers tend to concentrate mainly on register-to-register delay, as

this governs the maximum clock frequency at which a circuit can run.

Inputs that are triggered by the same clock may have an arrival time

specified so that they are guaranteed to settle before the following

clock edge.

However in the real world, some signals may not be related to the

clock

 A signal may come from another chip running on a different clock

 A signal may be an external input, for instance a push-button

 A signal may be from another clock domain inside the same chip.

In all these cases the designer needs to take care of synchronization.

Metastability

When an external asynchronous signal is sampled by a flip-flop, it will

be sampled correctly if it changes before the input setup time of the

flip-flop, and after the input hold time.

If the signal changes too close to the clock edge (within the time

interval from the input setup time to the input hold time) it is possible

that the signal will be sampled with the wrong value. However on the

following clock edge, the correct value should be seen.

However if the input signal changes extremely close to the clock

edge, it is possible for that signal to enter a metastable state – an

analogue value which is neither a zero nor a one. The signal will then

eventually settle to either a zero or a one randomly.

The big problem with metastability is if the “analogue” value at the

output of the flip-flop lasts such a long time that it affects other flip-

flops.

In that case, it is possible for downstream circuitry to end up in an

illegal state – that is two downstream flip-flops could sample the same

sampled signal at the same time, yet end up with different output

values; because that sampled signal is in an indeterminate (analogue)

state.

Asynchronous Signals and Metastability

6 Copyright © 2009 by Doulos. All rights reserved.

That could mean, for instance, that a state machine reaches a

supposedly “impossible” state.

The most important thing to realise about metastability is that there is

no cure. Metastability can always occur if you sample an

asynchronous signal – the question is only how often? Because of its

probabilistic nature, metastability is characterized by the mean time

between failures (MTBF).

Metastability documentation

There is a lot of documentation available for metastability.

General descriptions

 The FPGA FAQ
http://www.fpga-faq.org/FAQ_Pages/0017_Tell_me_about_metas
tables.htm

 The Massachusetts Institute of Technology course Computation
Structures contains a lecture about metastability
http://6004.csail.mit.edu/currentsemester/

Vendor provided information

 Actel Application Note AC308 “Metastability Characterization
Report for Actel Antifuse FPGAs”

 Actel Application Note “Metastability Characterization Report for
Actel Flash FPGAs”

 Altera “Understanding Metastability in FPGAs” white paper wp-
01082

 Altera AN473 “Using DCFIFO for data transfer between
asynchronous clock domains”

 Altera Quartus II 9.0 Handbook Volume 1 section 7 “Managing
Metastability with the Quartus II software”

 Lattice Semiconductor Corporation Technical Note 1055
“Metastability in Lattice Devices”

 Xilinx Application Note: Virtex II Pro Family XAPP094 “Metastable
Recovery in Virtex II Pro FPGAs”

http://6004.csail.mit.edu/currentsemester/

Copyright © 2009 by Doulos. All rights reserved. 7

Calculation of Metastability

In the references above you will find a full discussion of metastability.

The following equation can be derived for the MTBF due to

metastability

Where

 K1 Metastability catching set-up time.

 K2 Re-convergence quality factor, which is proportional to the
gain-bandwidth product in the internal feedback path of the first
latch inside the flip-flop.

 F1 and F2 system (sampling) and external (asynchronous) event
frequencies. We assume than there is no correlation between F1
and F2.

 tr acceptable extra delay (r representing “recovery” or
“resolution”).

The constants K1 and K2 are due to the detailed electronic design of

the flip-flop.

The value of tr is the amount of extra settling time that can be allowed

before the (possibly metastable) signal is sampled by the next

downstream flip-flop.

Regardless of the actual values involved, it can be seen that

increasing tr makes the MTBF exponentially better (longer).

Interpreting the Metastability Equation

Note that you have to be careful when encountering the equation

above to look at the definition of tr. When deriving the equation from

fundamentals, the value of total time t to resolve a meta-stable state

is the total settling time available, which comprises of Tco (the clock to

121

*

**

2

KFF

e
MTBF

rtK

Asynchronous Signals and Metastability

8 Copyright © 2009 by Doulos. All rights reserved.

output delay of the flip-flop) + tr the additional time available to resolve

to a known value. In other words

t = Tco + tr

Thus the equation could be written

which can be re-arranged as

Then by absorbing the constant term into C1 (to give

our original K1) the original equation can be obtained.

Some of the papers above also use the contstant 1/K2 , normally

writing this as the greek letter τ (tau).

Increasing the MTBF

To increase the MTBF we want to allow as much time as possible

after the clock edge. If you imagine the case of 1 flip-flop feeding into

the first flip-flop of the main circuit, then the settling time tr = clock

period – Tco – Tsu – Tpd where

Tco is the clock to output delay of the first flip-flop, Tsu is the input

setup time of the following flip-flop, and Tpd is the propagation delay

of any combinational logic (or wiring) between the two flip-flops.

To make Tpd as small as possible, and hence make tr as large as

possible, we can simply cascade two flip-flops. To a first

121

*

**

2

CFF

e
MTBF

rtTcoK

121

**

**

22

CFF

ee
MTBF

TrKTcoK

TcoK
e

*2

Copyright © 2009 by Doulos. All rights reserved. 9

approximation, this multiplies the MTBF for one flip-flop by itself (i.e

the result is the square of the MTBF).

This technique is known as a two stage synchroniser.

More than one asynchronous input

What happens if you have more than one independent asynchronous

input? In that case each input will need separate synchronization. If

you have n inputs then the combined MTBF is given by

This means that the worst MTBF tends to dominate. For instance if

you have two MTBFs of 1000 years and one of 1 year, the combined

MTBF will be very close to (just less than) 1 year.

nMTBFMTBFMTBFMTBF

1111

21



Asynchronous Signals and Metastability

10 Copyright © 2009 by Doulos. All rights reserved.

Practical Example

Let’s now create a simple example problem. Rather than try and

obtain metastability constant values, we will use the new features of

Altera® Quartus® II 9.0 to show the effect of synchronization on our

circuit.

Circuit Description

We will use a simple counter. As modern devices and flip-flops are

very fast, we will write the counter in a “bad” style, to try and show the

effect of metastability.

The counter has a number of inputs including an UpDn signal which

causes it to count up (when UpDn is true) or down (when UpDn is

false); and a Load signal, which causes data to be loaded in from a

parallel input port.

We will assume all signals are synchronized to the counter clock

except for UpDn and Load – which are assumed to be asynchronous.

The counter has been written is such a way that there is a long path

from UpDn through to the adder of the counter. This is so that when

we synchronize this path, the metastability recovery time is reduced

by extra combinational logic.

You can download the counter code (both VHDL and Verilog

versions) from our website at http://www.doulos.com/knowhow/fpga

To synchronize the asynchronous inputs we create a synchronizer

design entity which is parameterizable for the number of stages of

synchronization. Here is the VHDL code for that synchronizer:

http://www.doulos.com/knowhow/fpga

Copyright © 2009 by Doulos. All rights reserved. 11

library IEEE;

use IEEE.Std_logic_1164.all;

entity sync is

 generic (nStages : positive);

 port (Clock : in Std_logic;

 D: in Std_logic;

 Q : out std_logic);

end;

architecture RTL of sync is

 signal delay : std_logic_vector(nStages-1 downto 0);

begin

 g1: for I in delay'RANGE generate

 -- first stage of synchronizer

 -- Capture external input

 g2: if I = 0 generate

 process(clock)

 begin

 if rising_edge(Clock) then

 delay(0) <= D;

 end if;

 end process;

 end generate;

 -- subsequent stages - will not be used if nStages = 1

 g3: if I /= 0 generate

 process(clock)

 begin

 if rising_edge(Clock) then

 delay(I) <= delay(I-1);

 end if;

 end process;

 end generate;

 end generate;

 -- assign from final stage of synchronizer to external output

 Q <= delay(nStages-1);

end;

By setting nStages to 1 or 2 we can create a 1 or 2 stage

synchronizer.

Asynchronous Signals and Metastability

12 Copyright © 2009 by Doulos. All rights reserved.

Setting up Altera Quartus II

To get started you’ll need to create a project in Altera Quartus II. The

easiest way to do this is to use the File > New Project Wizard... menu.

To see the same results described in this TechNote, select the device

EP3C5E144C8 (a Cyclone® III device).

You will need to add the files sync.vhd and counter.vhd to the project.

Using Altera Quartus II for Metastability

First, note that at the time of writing only certain device families are

supported for metastability calculation: Arria® II GX, Stratix® IV,

Stratix III, and Cyclone III. That is why we specified a Cyclone III

device above.

Setting up the Timing Analyzer

Set up the TimeQuest Timing Analyzer as follows:

 Select menu Assignments > Settings

 In the left pane, select Timing Analysis Settings

 To the right, select Use TimeQuest Timing Analyzer during
Compilation

 In the left pane, select TimeQuest Timing Analyzer

 To the right, click on the ... next to the SDC FileName: box, and
find the file counter.sdc (which is in the download from the
website).

This file sets the clock frequency.

 Click Add to add the counter.sdc file to the project.

 Now at the bottom of the same form, set Synchronizer
Identification: to Auto

 Click OK

The last step tells Quartus to search for chains of registers

automatically – note however that Quartus will not carry out

Copyright © 2009 by Doulos. All rights reserved. 13

metastability analysis until you have manually identified valid

synchronization chains.

Identifying Synchronization Chains

With the default setting of 1 stage of synchronization on UpDn and

Load, you should find that Quartus fails to identify any synchronization

chains. This is because the default behaviour is to look for at least 2

flip-flops, and we have set our synchronization chain length to 1.

To verify this

 Compile the design

 Run TimeQuest (double-click the clock icon)

 In TimeQuest, double-click Update Timing Netlist

 Double-click Report Metastability

You should see the message

Info: No synchronizer chains to report.

Now you can close TimeQuest.

To identify synchronization chains

 Select menu Assignments > Assignment Editor

 In the assignment editor, use the drop-down list under
Assignment Name, and select Synchronizer Identification

 Now double-click under To so a small right-pointing arrow
appears

 From the arrow, select Node Finder...

 In the node finder, set Filter... to Registers: Post Fitting

 Click List

 Select sync:s1|delay and sync:s2|delay, and add them to the
SelectedNodes

There’s a screenshot at the top of the next page:

Asynchronous Signals and Metastability

14 Copyright © 2009 by Doulos. All rights reserved.

 Click OK to close the dialogue box.

The final step is to set the value for these assignments in the

Assignment Editor (which should still be open).

 In the column labelled Value, select “Forced if asynchronous” for
both assignments.

 Save the assignments – once saved, you can quite the
assignments editor.

Now run compilation and TimeQuest again, and run the metastability

report. This time you should see

By carefully writing a bad design (!) and only using one stage of

synchronization we have achieved a very bad MTBF of 2 seconds!

However before changing our chains to length 2, it would be a good

idea to understand what this figure is really means. Altera Quartus is

automatically calculating a value based on the performance of the flip-

Copyright © 2009 by Doulos. All rights reserved. 15

flips in a Cyclone III chip with speed grade 8 – but what about the

frequencies?

The sampling frequency is set by the clock, which was set in the

counter.sdc constraint file. If you look in there, you’ll see we set a

clock period of 4.3ns (frequency of 233MHz).

The Quartus software assumes that the inputs we are sampling are

changing at 1/8 of the clock frequency (about 29 million transitions per

second).

In other words, the calculation is assuming that UpDn and Load are

both changing asynchronously 29 million times per second.

If this is not realistic, then you can adjust the assumptions by setting

the assignment Synchronizer Toggle Rate in the Assignment Editor.

You’ll also see from the Report Metastability output in TimeQuest the

figure

Worst Case Available Settling Time 0.571 ns

Improving Metastability

To improve the metastability we could

 reduce the clock rate

 reduce the input toggle rate (for UpDn and Load)

 choose a faster speed grade device

 re-design our code to remove the large amount of combinational
logic between UpDn and the destination registers in the counter

 increase the length of the synchronization chain

Let’s try the last one of these, increase the synchronization chain

length.

First, let’s find out what is the main contributor to our metastability.

From the metastability report it is possible to get the individual

contribution of each asynchronous input, which is shown below:

Asynchronous Signals and Metastability

16 Copyright © 2009 by Doulos. All rights reserved.

From this you can see that UpDn is the main culprit.

By increasing the synchronization chain to length 2 on the UpDn

input, we obtain an MTBF of “greater than 1 billion years” for the

UpDn input, and 1.24 years for the Load input – which gives a

combined MTBF of 1.24 years.

By making the synchronization chain length 2 for the Load signal as

well, the combined MTBF becomes over 1 billion years – which

should be good enough!

Copyright © 2009 by Doulos. All rights reserved. 17

Conclusion

We have summarised literature for metastability, and shown the

governing equation – pointing out the care needed to correctly

understand the various constants involved.

We have then worked through a practical example using the

metastability calculation features in Altera Quartus II 9.0 to show the

effect of adding stages to input synchronization of asynchronous

signals.

For modern fast CMOS processes a 2 stage synchronizer will almost

definitely be sufficient to increase MTBF to acceptable levels, but it is

easily possible that a single stage of synchronization is not sufficient.

Finally, it is wise not to ignore metastability even though modern chips

are very fast – it only takes one bad synchronizer (or even worse an

unsynchronized asynchronous input) to drastically reduce MTBF.

And Finally...

We hope you find this Technote useful. Please visit

www.doulos.com/knowhow for more valuable hints and tips, and to

download example code to go with this Technote.

http://www.doulos.com/knowhow

