
Copyright © 2010 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind.

Using the Cortex-M3/M4 Flash Patch and

Breakpoint Component for Firmware Updates

Marcus Harnisch, Doulos, 2010

Abstract

ARM processor cores implementing the v7-M architecture, currently Cortex-M3 and Cortex-M4,
include a component called the “Flash Patch and Breakpoint” Unit (FPB). Besides being used by
debug tools to provide a hardware breakpoint mechanism, FPB provides a mechanism for patching
immutable program code or literal constants in firmware by redirecting memory accesses. This paper
will show you an MCU-vendor independent approach to do this.

Introduction

Case 1: Part of the firmware of a Cortex-M3 based device is located in a ROM to protect it from any
form of modification. The code is suspected to contain a bug which needs to be fixed in the next
product release. Development devices with programmable memory instead of the ROM might not be
available. Perhaps verification could be simplified if it were possible to instrument the code.

Many man-hours will have to be spent on verification that the proposed fix will work as expected in the
actual product. Having a mechanism that would allow remapping instruction access from the affected
function to a function containing the code to be verified would enable developers to test the change in
situ.

Case 2: Another product with firmware in a memory region that cannot be modified for a variety of
reasons provides an upload mechanism for program code of some sort. In a specific product, part of
the firmware is located in ROM, another part will be factory programmed into an OTP NVM (One-Time
Programmable Non-Volatile Memory). Or perhaps a USB mass storage device might be polled by a
bootloader. If a suitable integrity-checked firmware update can be found, it will be copied into a
reserved memory region. The existing firmware will have to access new functions without knowing
their exact locations in advance.

Users of common microcontrollers might shake their heads in disagreement, since those devices offer
a variety of memory remapping options (RAM/Flash booting), and plenty of flash which can be
reprogrammed often enough. However, v7-M cores can also be found in ASICs which have been
tailored for a very specific application, with only the very functionality needed in the mass-produced
end product.

In many of the situations outlined above and other, similar ones, the traditional workaround is either to
provide entry points at fixed addresses where possible. Alternatively all relevant functions (which
need to be identified first) could be accessed through a programmable call table containing function
addresses. This is rather inefficient since the size of the call table has to scale with the number of
functions that might be replaced, not the actual number of functions that will be replaced in the end.

Lastly, all traditional solutions replace entire functions, while FPB can replace individual instructions.

FPB Theory of Operation

The ARM architecture v7-M (1) defines “Flash Patch and Breakpoint” (FPB) as a component that
monitors instruction fetch or data read (literal load) to CODE memory in the address range between
0x0 and 0x1FFFFFFF. If an instruction address in CODE memory matches one of the programmable
FPB instruction comparators, depending on FPB configuration either of two things may happen:

1. FPB returns a BKPT instruction. This is perhaps the most common use of FPB and is
normally controlled by the debug environment to implement common breakpoints.

2. FPB returns an instruction from a remap table. The remap table must reside in SRAM
memory space (0x20000000-0x3FFFFFFF) and contains instructions or literals to be returned

Copyright © 2010 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind.

if the corresponding comparator matches. Since all instruction fetches are word accesses,
care must be taken when remapping narrow instructions. Remapping adds extra latency to
the instruction fetch.

In case of data access (literals), only remapping is allowed. It is worth noting that only read accesses
will be monitored and remapped that way. Write accesses to addresses matching a comparator will
remain unaffected.

FPB provides an implementation defined number of address comparators for matching either
instruction or data addresses, respectively. In order to keep software generic, the exact number of
comparators of each type can be determined by reading the FP_CTRL Register fields NUM_LIT and
NUM_CODE1

1
.

Remapping is an optional feature of FPB. The bit FP_REMAP.RMPSPT indicates whether besides
generating breakpoints a particular FPB implementation supports remapping at all.

How it really works

In order to remap an instruction, the instruction address has to be programmed into one of the
comparator registers and enabled (FP_COMPx), the remap table has to be created in SRAM region
and the replacement instruction has to be placed in the slot corresponding to the comparator register.
The FPB has to be pointed to the table (FP_REMAP) and the FPB has to be enabled globally
(FP_CTRL).

Whenever the programmed address is fetched from, the word from our remap table will be returned
instead of the one at the requested address.

 If all we can do is replacing individual instructions, we can replace a function call (BL <label>) with
another, leaving all other calls to the same function unaffected. In many situations, however, we will
want to replace an entire function no matter where was called from. In this case we don‟t just replace
all calls that take us to the function (which would be a rather inefficient use of our limited number of
comparators), but instead we will remap the address of the first instruction of a function. That way,
when the processor fetches the function‟s first instruction, FPB will remap that memory access to
SRAM and return another branch

2
 to a replacement function instead. Figure 1 shows the process and

the individual steps. Incidentally, the address of the first instruction in a function is the address of the
function itself, which makes it rather simple to determine this address even from higher level
languages such as C.

1
 The architecture defines another related bit-field NUM_CODE2 (number of FPB banks) which

always reads zero in both Cortex-M3 (3) and Cortex-M4 (2)

2
 Don‟t use BL here, since that would spoil our link register.

Copyright © 2010 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind.

Example FPB usage

In the first use case above, reprogramming the FPB registers would perhaps be part of a debugger
script that is used to initialize the device for a specific kind of test. Since all debug-relevant registers
are memory mapped, they can be accessed easily using memory access commands provided by
every debug tool. In this scenario, the firmware itself will not have to be aware of FPB.

The second application scenario will require programmatic FPB configuration as part of the system
initialization in a boot loader. Let us assume for a moment that our system memory map consists of a
ROM region in which our firmware is stored and an extra Flash/OTP region for updates. Of course
RAM is available, too. ROM and OTP are part of the CODE region (first .5GB in the memory map),
whilst RAM is part of the internal SRAM region (1). A diagram of this memory map is shown in Figure
2.

An example application has been implemented which realizes the essential steps of such an update
mechanism. The ROM function func1() contains a bug and is to be replaced by func1_fixed() using
FPB.

Figure 1FPB Operation

ADDRI

RDATAI

FPB

SRAM

B <funcfix>

PUSH {r4,lr}

ARM
Cortex-M3

Core

CODE

 data returned to
core

data abandoned

1

2 3 4

Copyright © 2010 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind.

Normally our example system will execute code from ROM only. During system boot a routine will
have to detect whether the Update area has been programmed and set up FPB as well as the remap
table containing the instructions to be returned.

The partial image loaded into the Update area contains a table of address pairs. The first address in
this tuple is the original function that we want to replace with another one, perhaps located in the
Update area. The second address is that of the replacement function. We need this address for two
reasons: 1. It is the value to program into one of the FP_COMPx registers and 2. the synthesized
branch instruction is PC relative so the value in the B-opcode must be calculated relative to the
address of the original instruction.

This table will have to be located at a fixed address so it can be found by the boot-loader. This could
be achieved using an appropriate scatter loading file (aka linker script) or some other tool specific
mechanism.

The boot-loader will read the table skipping all slots that are “empty”. Both Flash and OTP read „1‟
when not programmed, so an address value of 0xFFFFFFFF has been chosen as ”empty” value. It
turns out that in ARMv7-M this is perfect, since addresses above 0xA0000000 carry the hard-wired
attribute XN (eXecute Never) and therefore couldn‟t possibly be legal function addresses anyway.

For each valid entry, the address field in the corresponding FP_COMPx register will be set to the
original function address. The register will also be configured to remap the instruction (as opposed to
generating a BKPT), and enabled.

The routine will calculate the branch offset from the current PC at the original function address to the
new function and generate a branch instruction (B) in the corresponding entry in a remap table in
SRAM. It is important to remember that the PC position in Thumb-2 is always calculated from the
executed instruction (Ex+4)

3
.

3
 This is different in Thumb-2 compared to traditional ARM cores, where the reference point was not

the address of the executed instruction but the address of the instruction fetched from memory.

0x1FFFFFFF

0x00000000

0x20000000

0x3FFFFFFF

CODE

SRAM SRAM

Remap table

Flash, OTP

ROM
Firmware

Update area

Remapping
information

Figure 2 Example memory map

Copyright © 2010 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind.

FPB itself will be informed (in FP_REMAP) about the location of the remap table, which we created as
a normal C data structure and which could be anywhere in RAM

4
. Finally, FPB will be enabled using

the global enable bit in FP_CTRL.

When the program executes, a function call to func1() will be successfully redirected to func1_fixed().

Caveats

FPB is part of the debug infrastructure and in particular it will be used by debug tools to generate
breakpoints. If you are debugging code which uses the FPB, like our example application, it could
happen that the debug tool overwrites your FPB configuration or conversely that your FPB
configuration overwrites breakpoints. Before implementing your boot-loader, make sure which order
your debugger assigns the FP_COMPx in.

At this point there doesn‟t seem to be a standard for communicating this dual use between debugger
and application. I recommend that tool vendors determine for each FP_COMPx register, whether it is
used for remapping and only use the remaining comparators. In case of a conflict the debug tool
could issue a warning, giving users the option of overwriting the register, or not setting the breakpoint.

Conclusion

All v7-M cores support FPB although implementations might differ in terms of size and availability of
the remapping functionality. FPB is useful for setting breakpoints even in read-only memory regions
without having to differentiate between software and hardware breakpoints.

Beyond its debugging aspect, FPB with remapping can be used in ROM-based end-products to
replace call tables. Setting up FPB is rather straightforward as demonstrated by the example code
provided along with this document.

Bibliography

1. ARM Ltd. ARMv7-M Architecture Reference Manual. Cambridge, UK : s.n., 2010.
ARM DDI 0403D.

2. —. Cortex-M4 Technical Reference Manual. Cambridge, UK : s.n., 2010. ARM DDI 0439C.

3. —. Cortex-M3 Technical Reference Manual. Cambridge, UK : s.n., 2008. ARM DDI 0337G.

4
 Almost anywhere, that is. The table must be aligned to an address which is a multiple of 32. We

achieve this using the aligned attribute in a syntax common to GCC and RVCT.

