
Tutorial

IMPLEMENTATION OF A CORDIC ALGORITHM USING THE
ACTEL CORTEX M1 DEV-KIT

Acknowledgement

This Tutorial as been created in co-operation between Doulos and the Fachhochschule
Oldenburg/Ostfriesland/Wilhelmshaven, the Laboratory for Computer Architectures and Programming of
peripheral sub-systems: Prof. Dr.-Ing. Gerd von Cölln, Hennig, Maxim, Janssen, Stephan.

�

Table of Contents

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 1

Table of contents

Introduction 3

1 Software 4

2 Implementation Method 5

2.1 Creation of a new project 5
2.2 Creating the microprocessor with CoreConsole 7

2.2.1 Selection of parts 8
2.2.2 Connecting the parts together 9
2.2.3 Configuring the parts 12
2.2.4 Generating the processor system 14
2.2.5 Memory Map 14

2.3 Clock setup 15
2.4 Adding user-defined hardware 16

2.4.1 Generating the hardware 16
2.4.2 Working with Smart Design 18
2.4.3 Creating a simple bus interface 23

2.5 Creating the Top Level 26
2.6 Synthesis 27
2.7 Place & Route 29
2.8 Programming the FPGA 31

3 Actel SoftConsole 33

3.1 Starting the IDE 33
3.2 Setting up a new C project 34
3.3 Importing project data 36
3.4 Memory addressing 39
3.5 Project properties 40
3.6 Compiling 42
3.7 Setting up the programmer and the debugger 44
3.8 Starting the programmer and the debugger 48

4 Description of the Program 52

Bibliography 53

Table of Figures 54

Introduction

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 2

Introduction

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 3

INTRODUCTION

The aim of this practical project in computer structures is to demonstrate how to implement microprocessors
in FPGAs and how to combine those with user-defined hardware functions (developed in VHDL). The
implementation discussed in this paper was based on an Actel Cortex M1 Enabled ProASIC3 Development
Kit. The Cortex M1 is a microprocessor, developed by ARM and Actel specially for use in FPGAs.

This Development Kit includes a PCB, populated with a ProASIC 3 M1A3P1000 FPGA, 16 MBytes of flash
memory, 1MByte of SRAM, a USB JTAG programmer and some additional I/O peripherals. A comrehensive
software suite with tools for the hardware implementation, the simulation and the programming are also part
of the Development Kit.

Software

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 4

1 SOFTWARE

The software included in the Development Kit (on three CDs) represented an older version of the tools. We
recommend to download the latest version of the software, available at www.actel.com. The following
versions have been used in this project:

• Libero v.8.1

• Core Console v.1.4

• Actel SoftConsole v.2.0.0.13

Implementation Method

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 5

2 IMPLEMENTATION METHOD

The purpose of this project was to implement a Cordic algorithm for the calculation of sine and cosine
functions on the given hardware. One part of this algorithm would be performed by external peripherals.

The following sections will present the detailed method by which this was realised.

2.1 Creation of a new project

The Libero IDE was used for the definition and implementation of the hardware. A new project was created
using the Project/New Project... menu option. In the dialogue box that opened up as a result,

the project’s name and location were specified, together with the HDL used, before clicking on Next.

Fig. 1: Creating a new project (Step 1)

The FPGA device, needed for the implementation, was then selected.

Implementation Method

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 6

Fig. 2: Creating a new project (Step 2)

Having clicked on Next once more, it was then possible to select the individual tools that would be used in
the development of the solution. If that were the very first project created in Libero, it would, additionally, be
necessary to specify the complete file paths to all these tools.

Fig. 3: Creating a new project (Step 3)

The next dialogue allowed all existing source files to be added to the new project. Finally, a summary of all
the selected options was presented, and the creation of the project was confirmed with a click on the
Finish button.

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 7

2.2 Creating the microprocessor with CoreConsole

The tool CoreConsole was used for defining the microprocessor. It can be invoked by clicking on the
CoreConsole icon in the Design Entry Tool.

Fig. 4: Empty project

The microprocessor was added to the project as a component and had to be identified, as shown in the
following dialogue. CoreConsole was then started with a click on OK.

Fig. 5: Creating a CoreConsole component

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 8

CoreConsole is divided in three sections. The largest one, on the right, is the working area in which the
microprocessor will be put together. On the left, in the lower section, there is a list of all available parts.
Selecting one of those results in the corresponding short description appearing in the upper section together
with associated links to the relevant datasheets.

2.2.1 Selection of parts

Any part from the list can be placed in the working area by selecting it and clicking the Add button. The
same can also be achieved by double-clicking on the required part in the list.

Fig. 6: Adding new parts in CoreConsole

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 9

Memory and input and output interfaces were needed, in addition to the microprocessor core, as well as buses
to ‘bind’ all those components together. The FPGA’s internal memory, associated with the CoreAhbSram
part, was chosen. The bus component, CoreAHBLite, was chosen to connect the memory and the processor
core together. The requirement for input and output interfaces was realized by a UART, for which the part
CoreUARTapb was chosen. This was attached to the bus component CoreAPB. To allow communication
between the buses, a bridge was needed, which was realized by the CoreAHB2APB part.

2.2.2 Connecting the parts together

Having chosen the required parts, it is now possible to either manually connect them together or let
CoreConsole establish all connections automatically. The latter was chosen by clicking on
Actions/Auto Stich....

Fig. 7: Connections performed automatically

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 10

The connections, which were to be performed automatically, were then selected in the dialogue box that
appeared as a result. Bus masters appeared at the top of this dialogue, followed by the bus slaves, followed by
other control signals such as clock and reset. In the case of the bus slaves, the bus port, to which they should
be connected, could additionally be defined.

Fig. 8: Automatic connections dialogue box

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 11

A click on the Stich button generated all the selected connections.

Fig. 9: The result of automatically performed connections

In addition to the two signals, Clock and Reset, already specified above, there were other signals that had to
be included in the top level interfaces: the processor’s UJTAG signals, necessary for loading programs and for
debugging, the RX and TX signals of the UART and one port of the APB bus. To perform these top level
connections the option Actions/Auto Stitch To Top Level... . was selected.

Fig. 10: Defining top level connections

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 12

The left pane of the dialogue box that appeared contained the constituant parts of the processor system
defined thus far. Whenever one of those was selected, the right pane showed the corresponding signals that
could be connected to the top level. Any signal on a green background indicates that it is already connected.

Fig. 11: The processor with all the required signals

2.2.3 Configuring the parts

Next came the configuration of the processor system’s components. This was done by moving the mouse
pointer over each of these parts and then selecting the Configure option. Right-clicking on each part
would perform the same task.

Fig. 12: Component configuration

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 13

In the software version used in this project, most of the configuration options for the Cortex-M1 processor
core were not available. Only a suitable debugging interface could be selected which, when using the Actel
Software, it was the Flash Pro 3.

The only option that needed to be configured for the memory component was its size, with 14 kByte being the
maximum possible.

The options for the UART, shown in Abb. 13, indicate that the component was configured without any
transmit or receive FIFOs, with a data size of 8 bits without parity and that the configuration could be
modified at any time by software. The baud rate was configured for a clock frequency of 16 MHz and a data
rate of 115200 Baut. More precise configuration details are included in the datasheet.

Fig. 13: Configuration options for the various components

Creating the microprocessor with CoreConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 14

2.2.4 Generating the processor system

Once all the options were configured, the processor system was generated. For this, under the tab
Generate, the required HDL was selected (VHDL in this project), in which the code for the processor

system should be generated. Finally the Save & Generate button was clicked to start the process. Once
this was complete, it was possible to exit the CoreConsole.

Fig. 14: Generating the processor system

2.2.5 Memory Map

The processor’s memory map is determined by the position of the individual components on the bus. The
AHB bus divides the overall addressable space of 4GByte in sixteen equal sections, each with a size of
256MByte. A connected APB bus further divides such a 256MByte section in sixteen subsections, each with a
size of 16MByte.

The UART occupies the third slot of the APB bus which, in turn, is attached on the twelfth slot of the AHB
bus. As a result, it can be accessed at address 0xC3000000.

Clock setup

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 15

2.3 Clock setup

The processor system should be clocked at a frequency of 16 MHz, on the PCB, however, there was an
oscillator providing a 48 MHz clock. With the Clock Control Circuits, also available on the PCB, it was
possible to generate several different, individually configurable, clocks from this ‘master’ clock. To generate
the required 16 MHz clock signal, the option Clock & Management / PLL - Static had to be
selected (see illustration below). In the resulting dialogue box, the input clock was defined with a frequency
of 48 MHz and the option External I/O was specified. The frequency of the output clock was defined

as 16 MHz. A click on Generate... opened a new dialogue, allowing to name this clock generating

component. A final click on the latter’s OK button started the component generating process.

Fig. 15: PLL setup

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 16

2.4 Adding user-defined hardware

The generated result in the Cordic Algorithm must be multiplied by a constant. In this project, this
multiplication was performed by additional hardware.

2.4.1 Generating the hardware

With the option Basic Blocks / Multiplier – Constant Multiplier it was possible
to have the tools generate a multiplier.

Fig. 16: Multiplier setup

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 17

Two registers were also needed: one in which the processor wrote the data to be used in the calculation and a
second one from which it could read its result. Both registers were generated using the option
Basic Block / Register (see illustration below). Abb. 17 shows the configuration of the input
register. The output register did not require a Load Enable input signal.

Fig. 17: Configuration of the input register

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 18

2.4.2 Working with Smart Design

It was sensible to include both the multiplier and the registers in a single block. This could be done either with
VHDL or by using the Smart Design tool.

Smart Design can be found among the Design Entry Tools., The new hardware block had to be given a name
when the tool was first started.

Fig. 18: Invoking the Smart Design tool

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 19

Then the new block’s individual components were added to Smart Design. This was done simply by dragging
the components from the hierarchical list on the left (see illustration below) onto the Canvas window on the
right. The three components were then connected to each other and to the top level.

Fig. 19: Adding components to the Canvas

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 20

This was done by changing to the Grid window: on the left, there is a list of all constituant components and
their I/O ports; on the right, the same components are listed again, this time in tabular form. In order to
establish a connection between, say, the output port of the input register (REG_IN_0: Q) and the input

port of the multiplier (MULTIPLIZIERER_0: DataA), one has to click on the cell at the intersection of

the row REG_IN_0: Q and column MULTIPLIZIERER_0. In this way, all possible connections
between the two ports will be shown. In this particular case, there was only a single possible connection
which was built with a single click.

Fig. 20: The Grid window showing the still unconnected components

In addition to the new block’s internal connections, described above, it was necessary to establish its ‘top
level’ ports, to allow the block to be connected to the other components of the processor system. These were
defined by right-clicking on the appropriate ports of the block’s individual components (for example on the
input port of the input register, REG_IN_0: DATA) and select the option

Promote To Top Level. It is also possible to rename any of these top level ports by right-clicking on

it and selecting the option Modify Top Level Port....

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 21

The result of the multiplication of two fixed point numbers, each with 24 decimal points, is too large to fit in
the output port (by a factor of 2^24). This problem can be resolved by ignoring the last 24 bits of the result.
This is why only bits 24-55 of the multiplier’s output port were connected to the output register’s input port.
This was done by splitting the 64-bit bus at the multiplier’s output by right-clicking on it and selecting Add

Slice... option.

Fig. 21: Bus splitting

The remaining ports of the bus were not used. To avoid subsequent unnecessary warnings these ports were
declared ‘unused’ by clicking on the Attribute column and selecting the option Mark as Unused.

Fig. 22: Marking unused pins

When all connections were done (as shown in Abb. 22), the new, user-defined, hardware block was ready. In
the Schematic window, the newly completed block could be seen and examined for any connection errors.

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 22

Fig. 23: The Schematic window showing the used-defined multiplier block

VHDL Code could be generated automatically by clicking on the icon Generate SmartDesign or

thtough the menu option SmartDesign / Generate.

Fig. 24: Generating VHDL Code

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 23

2.4.3 Creating a simple bus interface

The newly created hardware block had to be connected to the APB bus of the processor system. A bus
interface was, therefore, necessary and, in this case, it was particularly simple to develop: it only had to
establish a Write Enable signal for the input register, pass the clock signal on to the multiplier and connect the
bus’ read- and write-data signals with the block’s registers.

Using the Comparator / Constant Decoder option, a comparator was automatically generated
and configured as an address decoder, i.e. activating a signal whenever the address on the bus ‘hit’ on the
component’s address space.

Fig. 25: Defining a comparator as address decoder

This address decoder was brought together with the previously generated multiplier block in a new Smart
Design.

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 24

According to the bus protocol, performing a write operation to a peripheral device, involves the signals PSEL,
PENABLE and PWRITE. These were combined with a AND-gate. A second AND-gate was needed to
include the output of the address decoder. These AND-gates were found in the Actel Cell Library and
instantiated in the design by dragging and dropping in the Canvas window.

Fig. 26: Instantiating AND-gates in Smart Design

Adding user-defined hardware

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 25

The connections were built as shown in Abb. 27 and Abb. 28.

Fig. 27: Multiplier with Adress Decoder (Grid window)

Fig. 28: Multiplier with Adress Decoder (Schematic window)

Creating the top level

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 26

2.5 Creating the Top Level

When all the components had been generated, they were connected together and the processor system’s top
level ports were defined and connected to the FPGA’s pins. With earlier versions of the Libero software, all
this could have been done with Smart Design. With version 8.1, used in this project, there was a problem with
the APB bus however.. In Smart Design, the port PRDATA was not displayed and, consequently, could not
be connected. Because of this, the top level was developed in VHDL.

Fig. 29: Creating the top level VHDL file

Any VHDL files created in this way can be checked for syntax errors. To do this, one needs to right-click on
the relevant file and select the Check HDL File option. The results are displayed in the Log window.

Synthesis

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 27

2.6 Synthesis

For the synthesis, it is necessary to identify the file which represents the top level of the design. This will then
be shown in bold in the overall design hierarchy. One can redefine the top level of any design simply by right-
clicking on a file in the design’s hierarchy, and selecting the option Set As Root.

Fig. 30: Selecting the component Top Level as the top level of the project

The Synplify synthesis tool was then invoked with a double-click.

Fig. 31: Synplify

When Synplify first started, there was an error message about the selected FPGA device not being known. To
ensure a problem-free run of the tool, it was necessary to specify a different FPGA as the target device. This
was done by clicking the lower of the two Change buttons: in the dialogue box that opened up, the Actel

Synthesis

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 28

ProASIC3 A3P1000 device was selected, which is, both in terms of size and resources, identical to the one on
the PCB.

Fig. 32: Changing the target device

The synthesis process was started with the Run button. Clicking on the View Log button, displays all
warnings and error messages. Warnings in source files that were automatically generated by the tools, can
usually be ignored.

Fig. 33: Starting the synthesis

Place & Route

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 29

2.7 Place & Route

A successful synthesis in Synplify is indicated by the colour green. At that point the Designer tool was
invoked by clicking on the Place & Route button. The default settings were kept and confirmed with a

click on OK. The compiler was started with a click on the Compile button. How long this process will take
until it completes depends on the computer on which it is run.

Fig. 34: The Designer tool

Place & Route

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 30

Following the compilation, the I/O assignment was performed using the I/O Attribute Editor.

Fig. 35: Mapping top level ports to FPGA pins (I/O assignment)

When the I/O assignment was completed, the Layout was started by clicking on the corresponding button.
This is another process which could last several minutes, even on powerful computers.

Finally, once the Layout process was successfully completed, the programming file was generated with a
click on the Programming File button. The Designer tool was then shut down.

Programming the FPGA

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 31

2.8 Programming the FPGA

The tool Flash Pro was used to ‘program’ the FPGA, i.e. to transfer the design (represented by the
programming file) onto the FPGA on the PCB. The latter must be connected to the computer via a USB cable
to allow this.

Fig. 36: Invoking the Flash Pro tool

Programming the FPGA

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 32

In case no design gets automatically loaded when the tool is started, it is possible to load one manually, by
clicking on Configure Device and then on Browse.

Fig. 37: Flash Pro

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 33

3 ACTEL SOFTCONSOLE

The IDE for programming the synthesized processor on the FPGA is based on Eclipse. Actel has created a
plugin for Eclipse, dedicated to the ARM7 and the Cortex-M1 processor cores. This is installed at the same
time as the rest of the software.

Fig. 38: Desktop icon of the Actel SoftConsole

3.1 Starting the IDE

When the IDE is started, the user will be asked to select a ‘workspace’, as shown in the following illustration.

Fig. 39: Defining a workspace

The folder specified above could be configured to serve as the default folder, so that by subsequent starts of
the IDE, it would not be necessary to specify it again.

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 34

3.2 Setting up a new C project

To start a new project one should select the menu option
Files / New / Managed Make C Projekt, as shown in the illustration below.

Fig. 40: Starting a new project

In the “New Project” dialogue box the project’s name was entered. The option to change the default folder
also exists at this stage.

Fig. 41: Specifying the project’s name

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 35

The illustration below shows a fundamental setting for the project: the value of the field Project Type

must be set to Embedded Executable (Actel GNU for Cortex-M1) to allow
programming of the Cortex-M1 processor core. Making this choice activates important configuration features
of the project. Finally, the dialogue box can be closed by clicking on the Finish button.

Fig. 42: Selecting the project type

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 36

3.3 Importing project data

Once an empty project was created, it would normally be possible to either import data necessary for the
configuration of the processor or to manually define such data. In many IDEs such configuration data is
automatically imported once the processor has been specified. This is not the case with this project however,
so that the user must perform all the tasks manually.

Fig. 43: Importing data

To manually import project data, it was necessary to right-click on the project name (in the “C/C++ Projects”
window, as shown in Abb. 43) and, in the context menu that opened up, to select Import...; in the
“Import” dialogue box (shown below) that appeared as a result, “File System” was selected before continuing
by clicking on Next.

Fig. 44: Import dialogue

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 37

In the next dialogue, the Browse... was clicked and, in the file browser that opened up, one selected the

folder containing the data that needed to be imported and confirmed with the OK button.

Fig. 45: Choosing the folder containing the data to be imported

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 38

All the data contained in the selected folder were now shown in the left pane of the dialogue box. Ticking the
box next to the folder’s name one selects the data to be imported. As it can be seen in the illustration below,
the top three data files, listed in the right pane, are not selected, as they contain configuration data and
properties of a project: they were already set up when an empty project was created, a little earlier. Importing
those three files would result in the existing setup files being overwritten. Having made a choice, a click on
the Finish button performs the data import.

Fig. 46: Select the data to be imported

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 39

3.4 Memory addressing

Once all the necessary data were included in the project, it was necessary to define the memory addressing
details.

As the internal SRAM of the FPGA occupied the lowest ‘slot’ in the memory map, it would also be mapped at
the memory offset of 0x00000000 in the linker script (run_from_ram.ld), as shown in the following
illustration. The size of this memory was configured by CoreConsole to be 14 kByte, a figure which
represents the maximum SRAM size possible for this FPGA.

Fig. 47: Configuring the memory

The stack pointer was configured to exist at the end of the SRAM address range and as it dynamically grows
it moves towards address 0x00000000. This is represented by the “define TOP_OF_MEMORY” statement in
the file “sys_boot.c”, where TOP_OF_MEMORY = memory offset + memory size.

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 40

3.5 Project properties

The linker script (run_from_ram.ld) must be included in the project’s features while the standard start up file
must be deactivated. The project properties can be accessed from the context menu which appears when one
right-clicks on the project. (s. Abb. 48).

Fig. 48: Setting up the project properties

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 41

In the project’s properties dialogue box, the following points were configured as shown in the following two
illustrations (Abb. 49 and Abb. 50).

Fig. 49: Excluding any standard start up files

Fig. 50: Including the linker script

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 42

3.6 Compiling

Once everything had been configured properly, the project was compiled.. It is important to note, at this point,
that any files which might still be open, should have been saved. Any files which have been modified after
they were last saved, will be identified with a “*” to the left of their filename (s. Abb. 51)

Fig. 51: Identification of a modified and not yet saved file

The compilation can be done either with the Build All option, where only modified files will be re-

compiled, or with the Clean... option, where all object files will be deleted and generated again. The
commands to perform the compilation can be found in menu “Project”. All messages, generated during the
compilation of the project, will appear in the console window.

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 43

At the end of a successful compilation, the message Build complete for project xxx (where
“xxx” is the name of the project) will appear in the console pane while a new file, “Binaries”, appears in the
project pane. (s. Abb. 52).

Fig. 52: Compiling the project

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 44

3.7 Setting up the programmer and the debugger

The programmer is implemented on the PCB. To configure it, one needs to select the option External

Tool... in the toolbar (s. Abb. 53).

Fig. 53: Configuring the programmer (Step 1)

The following illustration shows how one can access the various configuration fields.

Fig. 54: Configuring the programmer (Step 2)

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 45

The configuration settings for the Development Kit “M1A3P-DEV-KIT-SCS” are shown in the dialogue box
in the following illustration. When the value of any one field in that dialogue is changed, it can be saved by
clicking on the “Apply” button.

Fig. 55: Configuring the programmer (Step 3)

Once the programmer is configured, it must also be included in the Favorites so that it can be invoked.
The illustration below shows how this can be done.

Fig. 56: Configuring the programmer (Step 4)

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 46

Configuring the Debugger is very similar to the configuration of the programmer. By selecting the option
Debug..., in the menu bar, a dialogue opens up, as shown in the illustration below. The first thing that

was done was to set up the options for Embedded debug. In the tab Main one has to select first the
created project and then the compiled file “Binaries”.

Fig. 57: Configuring the Debugger (Step 1)

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 47

Once the required file for the debugging was selected, the invocation parameters for the debugger were also
specified. This was done by changing to the Commands tab and specifying the parameters as shown in the

illustration below. The parameters were saved when the button Apply was clicked.

Fig. 58: Configuring the Debugger (Step 2)

These settings were then included in the Favorites, just like the programmer was, a little earlier. The
method used for this was similar to that used for the programmer, described earlier in this document. The end
result is shown in the following illustration.

Fig. 59: Configuring the Debugger (Step 3)

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 48

3.8 Starting the programmer and the debugger

Once the source code has been successfully compiled and the programmer and debugger have been set up, the
program could be downloaded and debugged.

The Debug window was opened first, as shown in the following illustration.

Fig. 60: Opening the Debug window

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 49

The connection to the programmer was then built, by clicking on the attached settings for the programmer (s.
Abb. 56).

Fig. 61: Starting the programmer

The Debug window shows the connection to the programmer. Once this connection has been built
successfully, the display of the Console window would be as shown in the illustration above. The debugging
can then be started by clicking on the Debug settings (s. Abb. 59).

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 50

When the Debugger was started, this was shown in the Debug window. Clicking on arm-none-eabi-

gdb... in the Debug window, results in status information, concerning the connection to the Debugger and
the downloads, appearing in the Console window. Once the program got loaded successfully, the Debugger
‘jumped’ at the first statement of the main function (s. Abb. 62).

Fig. 62: The debugger started

Actel SoftConsole

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 51

When the ‘main’ function was selected in the Debug window, as shown in the illustration below, the buttons
for the debugging were activated.

Fig. 63: Debugging

Description of the program

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 52

4 DESCRIPTION OF THE PROGRAM

In order to test the hardware, a Cordic algorithm was implemented. This algorithm calculates the sine and
cosine functions of a given number. Such a number was entered over the UART interface through a Hyper-
Terminal or some similar program on a PC.

The first action of the main program was to initialise the UART. Then some text was output over the UART,
following which the program would wait for input from the user. Such input would first be checked for any
errors, before being formatted as a fixed point number, with 8 bits before and 24 bits after the decimal point,
and passed on to the function that implemented the Cordic algorithm. The result of the calculation were
transformed back into strings and output over the UART.

Bibliography

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 53

BIBLIOGRAPHY

www.actel.com

Table of Figures

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 54

TABLE OF FIGURES

Fig. 1: Creating a new project (Step 1)___ 5
Fig. 2: Creating a new project (Step 2)___ 6
Fig. 3: Creating a new project (Step 3)___ 6
Fig. 4: Empty project___ 7
Fig. 5: Creating a CoreConsole component ___ 7
Fig. 6: Adding new parts in CoreConsole ___ 8
Fig. 7: Connections performed automatically__ 9
Fig. 8: Automatic connections dialogue box __ 10
Fig. 9: The result of automatically performed connections___________________________________ 11
Fig. 10: Defining top level connections___ 11
Fig. 11: The processor with all the required signals___ 12
Fig. 12: Component configuration __ 12
Fig. 13: Configuration options for the various components ___________________________________ 13
Fig. 14: Generating the processor system___ 14
Fig. 15: PLL setup___ 15
Fig. 16: Multiplier setup __ 16
Fig. 17: Configuration of the input register ___ 17
Fig. 18: Invoking the Smart Design tool __ 18
Fig. 19: Adding components to the Canvas__ 19
Fig. 20: The Grid window showing the still unconnected components ___________________________ 20
Fig. 21: Bus splitting ___ 21
Fig. 22: Marking unused pins __ 21
Fig. 23: The Schematic window showing the used-defined multiplier block_______________________ 22
Fig. 24: Generating VHDL Code ___ 22
Fig. 25: Defining a comparator as address decoder___ 23
Fig. 26: Instantiating AND-gates in Smart Design __ 24
Fig. 27: Multiplier with Adress Decoder (Grid window) _____________________________________ 25
Fig. 28: Multiplier with Adress Decoder (Schematic window) _________________________________ 25
Fig. 29: Creating the top level VHDL file ___ 26
Fig. 30: Selecting the component Top Level as the top level of the project _______________________ 27
Fig. 31: Synplify __ 27
Fig. 32: Changing the target device ___ 28
Fig. 33: Starting the synthesis __ 28
Fig. 34: The Designer tool __ 29
Fig. 35: Mapping top level ports to FPGA pins (I/O assignment)_______________________________ 30
Fig. 36: Invoking the Flash Pro tool ___ 31
Fig. 37: Flash Pro ___ 32
Fig. 38: Desktop icon of the Actel SoftConsole___ 33
Fig. 39: Defining a workspace ___ 33
Fig. 40: Starting a new project ___ 34
Fig. 41: Specifying the project’s name ___ 34
Fig. 42: Selecting the project type___ 35
Fig. 43: Importing data ___ 36
Fig. 44: Import dialogue __ 36
Fig. 45: Choosing the folder containing the data to be imported _______________________________ 37
Fig. 46: Select the data to be imported ___ 38
Fig. 47: Configuring the memory ___ 39
Fig. 48: Setting up the project properties ___ 40
Fig. 49: Excluding any standard start up files ___ 41
Fig. 50: Including the linker script __ 41

Table of Figures

Copyright  2007-8 by Doulos Ltd. All rights reserved. All information is provided “as is” without warranty of any kind. 55

Fig. 51: Identification of a modified and not yet saved file ____________________________________ 42
Fig. 52: Compiling the project ___ 43
Fig. 53: Configuring the programmer (Step 1) ___ 44
Fig. 54: Configuring the programmer (Step 2) ___ 44
Fig. 55: Configuring the programmer (Step 3) ___ 45
Fig. 56: Configuring the programmer (Step 4) ___ 45
Fig. 57: Configuring the Debugger (Step 1) ___ 46
Fig. 58: Configuring the Debugger (Step 2) ___ 47
Fig. 59: Configuring the Debugger (Step 3) ___ 47
Fig. 60: Opening the Debug window___ 48
Fig. 61: Starting the programmer ___ 49
Fig. 62: The debugger started __ 50
Fig. 63: Debugging __ 51

