
Towards a Practical Design Methodology
with SystemVerilog Interfaces and Modports

Jonathan Bromley
Doulos Ltd

Ringwood, U.K.
jonathan.bromley@doulos.com

Abstract—Explores the benefits and limitations of
SystemVerilog interfaces and modports in block-level design.
Identifies key problems of portability, re-use and flexibility in
interface-based design, and suggests a methodology for
adoption of SystemVerilog interfaces and modports that helps
to solve these problems in synthesizable designs.

 I. INTRODUCTION

The interface construct provided in the SystemVerilog
hardware design and verification language [1] offers a means
to encapsulate complicated interconnect, just as Verilog's
module construct encapsulates functionality. However,
interconnects used in typical modern electronic systems and
subsystems are not merely wiring. They contain non-trivial
functionality within the interconnect structure itself (often
known as the bus fabric), and subsystems connected to such
a bus fabric need logic to support the often complex
protocols required by interconnect standards. It is not
obvious how the interface construct can be used to support
all common interconnect modeling styles.

Section II reviews the key features of, and motivation for,
SystemVerilog’s interface construct, and shows how it can
be used to model interconnect structures.

Section III describes what the author believes to be the
key challenge associated with the use of interfaces in design,
and shows that the most obvious solutions are unsatisfactory
in practice.

Section IV examines more radical solutions to the
problem discussed in section III, and argues that these
solutions are out of reach until tool vendors provide more
complete SystemVerilog language support than is available
at present.

Sections V and VI consider how the advanced features of
interfaces can be used to make designs more expressive, and
address some concerns about robustness and ease of use.

Finally, section VII concludes with some specific design
methodology recommendations that respect the limitations of
current tools, and summarizes changes to tools and language
features that could make interfaces more widely useful.

 II. INTERCONNECT MODELING USING SYSTEMVERILOG

A. Data structures are not enough
Like most other programming and hardware-description

languages, SystemVerilog offers a rich set of constructs for
modeling user-specified data structures. In particular, it has
the struct and union construct and the useful concept of
packed data objects. Packed data in SystemVerilog are
stored in contiguous collections of bits having a well-defined
organization, so that (in design applications) the mapping
between data structures and the underlying hardware that
carries them is explicit. However, these packed structures
are inappropriate for modeling complicated interconnect
structures. They do not capture information about direction
of signal flow, nor do they allow for the specification of
different views of the interconnect for different kinds of
client modules that may connect to it. Both these issues are
elegantly answered by the interface and modport constructs
in SystemVerilog. Note that, in the remainder of this paper,
the word “interface” is used exclusively to refer to the
language construct in SystemVerilog and not in its ordinary
usage.

B. Interconnect modeling using SystemVerilog interfaces
The SystemVerilog interface construct is closely similar

to a Verilog or SystemVerilog module both in the syntax of
its declaration and the language constructs it is permitted to
contain.1 It has, however, two special distinguishing
features:

• it can contain modport constructs;

• an interface instance may be connected to a
module’s port, giving that module access through the
port to the interface’s entire contents but appearing
as a single connection in the module’s instantiation.

1 Reference [1] forbids module instances within an interface.
However, this restriction is not enforced by all tools and is

likely to be lifted in a future revision of the standard.

A modport defines a view of an interface, specializing
the interface so that a specific kind of client module can
connect to it in an appropriate manner. Fig.1 illustrates two
modules, one a driver and the other a receiver, connected
together by a very simple interface containing only one
signal. Modports driver_mp and receiver_mp capture
views of the interface as required by driver and receiver
modules respectively. The modules explicitly choose to
connect to the modport appropriate to their behavior. It is
useful to note that dataflow direction in a modport is
specified from the point of view of the connected module
rather than from the point of view of the interface. Thus, for
example, in our driver_mp modport, signal Sig is
specified as an output from a connected driver module.

For a trivial interface as shown in Fig.1 there is obviously
little benefit in the use of interfaces. Indeed, it adds some
complication to the connected modules – note, for example,
the “dotted name” ri.Sig that must be used in the receiver
module. However, if the interface encapsulates large and
complex connectivity, the simplification achieved in the
enclosing module is very valuable. In particular, if the
interface represents a standard bus structure that is replicated
in more than one place in the design, bus signals within the
interface can retain their standard names, since they are
encapsulated in an interface instance. It is not necessary to
invent names for signals in the various instances of the bus
structure.

C. Key features of this modeling style
Superficially, the use of interfaces described in the

previous paragraphs is a straightforward extension of the
Verilog language. It has always been possible to capture a
large collection of interconnect in a module and instantiate
that into an enclosing module. An interface merely makes it
more convenient for us to reach into that “module” by
allowing it to be referenced through a port of a module that

wishes to connect to it. However, there are two far-reaching
repercussions of this change.

• The port connection in each connected module
makes reference not to a variable or net in the
enclosing module, but to an instance. We have, in
effect, bound an identifier (the module’s port name)
to an existing hierarchical instance. This ability is a
radical addition to the Verilog language.
SystemVerilog extends this notion yet further by
providing a new kind of variable (a virtual interface)
that can be bound to an interface or modport instance
dynamically, at run-time, although this feature is
inappropriate for synthesis and is not discussed
further here.

• The usage of interfaces and modports shown in Fig,1
is synthesizable by at least two commercially
available tools.2 (The Verilog code shown in the
connected modules is simplified for the sake of
brevity and is not synthesizable, but if it were, then
the whole design would be synthesizable.) The
important change here is that synthesis tools have
traditionally refused to accept any kind of
hierarchical name or cross-module reference but, in
the special case of members of a connected interface,
synthesis of forms such as ri.Sig is possible.
Current tools achieve this by flattening each
interface instance so that it becomes a collection of
signals declared in the instantiating module, and then
rewriting all connected modules’ port lists
appropriately.

 III. THE PROBLEM OF MULTIPLE DRIVERS

The style exemplified in Fig.1 is perfectly suited to
modeling a system structure in which each module is
“plugged-in” to a backplane or similar bus structure having a
number of identical sockets or attachment points all wired in
parallel. Each modport represents one possible kind of
socket. There is no limit on the number of modules that can
connect to a modport (although, as discussed later, a
mechanism exists in SystemVerilog interfaces to restrict a
modport so that only zero or one module instance may
connect to it). All module instances connecting to a given
modport will see exactly the same set of interconnect, with
the same directionality attributes.

A. Three-state drivers
The approach described above works very well for multi-

drop bus structures in which each module has a driver on its
outputs but only one module’s drivers are active at any given
time. In such a scheme, the output drivers of currently
inactive modules must refrain from driving their outputs,
typically by asserting a high-impedance (“Z”) value onto
those outputs. Multi-drop buses of this type are common and

2 It is likely that there are further synthesis tools, of which

the author is unaware, that offer similar capability.

Figure 1. Interface with modports connecting two modules

interface Sig_Intf;
 logic Sig;
 modport driver_mp (output Sig);
 modport receiver_mp (input Sig);
endinterface

module Driver(Sig_Intf.driver_mp si);
 initial si.Sig = 1’b1;
endmodule

module Receiver(Sig_Intf.receiver_mp ri);
 initial #1 $display(ri.Sig);
endmodule

module Top_Fig1;
 Sig_Intf S ();
 Driver D (S.driver_mp);
 Receiver R (S.receiver_mp);
endmodule

appropriate for systems built at the level of a circuit board or
a rack-and-cards system, but are usually inappropriate at the
on-chip level where three-state drivers (those capable of
asserting a high-impedance output) present many difficulties
relating to testability and other issues.

Fig.2 shows a simple example in which the master
module provides an address signal to the interface through a
dedicated modport master_mp. Each slave module,
connected via modport slave_mp, compares the address
signal with a parameter value. If its address matches, a slave
assumes it has been activated and it drives a value on to the
interface’s common Data net. Inactive slaves place a high-
impedance value on the Data net.

Some synthesis tools, notably those targeting FPGA
devices that lack on-chip three-state drivers, can
automatically restructure such a description so that a set of
three-state drivers is mapped on to a multiplexer with
equivalent functionality. However, this facility is not
universally available; and in any event the author is uneasy
about a technique demanding not only that the designer
specify an apparently inappropriate architecture, but also that
the synthesis tool then convert it to a very different
architecture.

B. Selective writing to variables
As an alternative to three-state drivers on a multi-drop

signal modeled as a net, the signal could be modeled as a
variable. Only the currently active connected module writes
to that variable; other connected modules are deselected and
refrain from writing to the variable. This approach works
well in simulation but is unlikely to be synthesizable,
because it requires the synthesis tool to resolve Verilog’s
“last write wins” semantics across assignments from code in
multiple module instances. Most synthesis tools cannot do
this resolution even for the much simpler case of
assignments from multiple processes in the same module.

Fig.3 modifies the example of Fig.2 to show how
multiple data sources can be implemented using selective
write to a variable in the interface, as described in the
preceding paragraph. It is probably appropriate to emphasize
once again that this approach simulates correctly but is not
synthesizable with currently available tools.

 IV. PROPOSED SOLUTIONS

A. Selection (addressing) functionality in the interface
SystemVerilog interfaces can include functionality, much

in the same way as modules. Consequently it would be
straightforward to add address-decoding functionality to the

Figure 2. Multiple slaves using three-state drivers

interface TS_Intf;
 wire Data; // uses a net
 logic [7:0] Adrs;
 modport
 master_mp(output Data, input Adrs);
 modport
 slave_mp (input Data, output Adrs);
endinterface

module TS_Master(TS_Intf.master_mp mi);
 initial begin
 mi.Adrs = 50; // select first source
 #100
 mi.Adrs = 42; // select other source
 end
endmodule

module TS_Slave
 #(parameter A = 0)
 (TS_Intf.slave_mp si, input logic data);
 assign si.Data = (si.Adrs == A)
 ? data // selected
 : 1’bz; // deselected
endmodule

module Top_Fig2(input logic d42, d50);
 TS_Intf T ();
 TS_Master M (T.master_mp);
 TS_Slave #50 S50 (T.slave_mp, d50);
 TS_Slave #42 S42 (T.slave_mp, d42);
endmodule

Figure 3. Multiple slaves using selective write to variable

interface Var_Intf;
 logic Data; // uses a variable
 logic [7:0] Adrs;
 modport
 master_mp(output Data, input Adrs);
 modport
 slave_mp (input Data, output Adrs);
endinterface

module Var_Master(Var_Intf.master_mp mi);
 initial begin
 mi.Adrs = 50; // select first source
 #100
 mi.Adrs = 42; // select other source
 end
endmodule

module Var_Slave
 #(parameter A = 0)
 (Var_Intf.slave_mp si, input logic data);
 always @*
 if (si.Adrs == A) // when selected...
 si.Data = data; // ...update result
endmodule

module Top_Fig3(input logic d42, d50);
 Var_Intf V ();
 Var_Master M (V.master_mp);
 Var_Slave #50 S50 (V.slave_mp, d50);
 Var_Slave #42 S42 (V.slave_mp, d42);
endmodule

interface, thus locating it in the bus fabric (the interface
itself) rather than in the connected modules. Each slave
module has its own distinct modport, with its own dedicated
data signal. Selection logic in the interface drives the
appropriate data signal on to the interface’s common Data
signal.

Whilst this approach is straightforward, and readily
implemented using today’s tools, it has the severe drawback
that the bus fabric must be given a distinct modport for each
connected module. Consequently the interface definition
cannot be generic and re-usable. Worse still, each modport
needs a distinct data signal, and these distinct names are
visible to the connected slaves. As a result, each slave must
be specialized for the modport to which it should connect.
We do not consider this approach to be useful in practice.

B. An array of signals, one per slave
The approach of section IV.A can be usefully improved

by providing an array in the interface, as shown in Fig.4.
The whole of this array can then be made visible to all

connected modules through a single modport. Each
connected module is parameterized for the array subscript
that it will use, and takes care to write only to that element of
the array. Within the interface, address decoding or other
selection logic determines which element of the array is to be
copied to the common Data signal; in our example we have
ORed together the various signals.

Whilst this style is readily implemented with current
tools, and can be used to model most typical bus structures, it
seems clumsy. It is awkward to parameterize, and requires
careful coordination of parameter values on the interface and
on its connected modules.

The design described in [2] uses an extended form of this
technique in which calls into functions in the interface are
also parameterized for the slave identity.

C. Point-to-point interfaces; with bus fabric in a module
The bus fabric, together with module selection (address

decoding) functionality, can be implemented in a traditional
Verilog module. SystemVerilog interfaces can then be used
to capture the point-to-point interconnect between each
connected module and its dedicated port on the bus fabric.3

Some features of interfaces remain valuable even in this
restricted use model, as illustrated in Fig.5. This style has a
number of important benefits.

3 The author is grateful to B. Mathewson of ARM Ltd for

bringing this technique to his attention.

Figure 4. Interface with slave signal array

interface Arr_Intf;
 logic Data;
 logic slave_D[0:1];
 logic [7:0] Adrs;
 modport
 master_mp(output Data, input Adrs);
 modport
 slave_mp (input slave_D, output Adrs);
 always_comb
 Data = slave_D[0] | slave_D[1];
endinterface

module Arr_Master(Arr_Intf.master_mp mi);
 initial begin
 mi.Adrs = 50; // select first source
 #100
 mi.Adrs = 42; // select other source
 end
endmodule

module Arr_Slave
 #(parameter A = 0, slave_ID = 0)
 (Arr_Intf.slave_mp si, input logic data);
 always @*
 if (si.Adrs == A) // when selected...
 si.slave_D[slave_ID] = data;
 else // not selected
 si.slave_D[slave_ID] = 0;
endmodule

module Top_Fig4(input logic d42, d50);
 Arr_Intf A ();
 Arr_Master M (A.master_mp);
 Arr_Slave #(50, 0) S50 (A.slave_mp, d50);
 Arr_Slave #(42, 1) S42 (A.slave_mp, d42);
endmodule

Figure 5. Bus fabric module and point-to-point interfaces

Bus fabric module

Master module

Slave module

M
Intf
S

M
Intf
S

M
Intf
S

Slave module

MASTER
modport

SLAVE
modport

Interface
(bus signals)

• Each point-to-point interconnect uses the same set of
signals. An interface allows the standard names of
these signals to be used even when there are multiple
instances of the interconnect at the same level of the
design hierarchy (as will surely be the case when
using this approach).

• Modports are valuable to distinguish the two ends of
a point-to-point interconnect. For example,
connected slave modules will see the bus fabric as a
master; connected master modules will see the bus
fabric as a slave. If it possesses modports for both
slave and master, the interface used to model each
point-to-point interconnect can correctly reflect this
distinction in a uniform manner.

This usage idiom is a good fit with typical modern multi-
level bus architectures, and presents no difficulties for
current simulation and synthesis tools. It makes use of the
interface construct in a rather straightforward manner, and
pushes most of the design challenges into the bus fabric
module. In practice, the bus fabric module is likely to be
customized by a specialized software tool to suit the user’s
system requirements, and therefore questions of re-usability
of the bus fabric module do not apply: re-use is achieved
through the customization tool.

D. Generated modports with modport expressions
Earlier in this section it was noted that it is troublesome

to implement address decoding in the interface because each
connected module then needs a distinct modport of its own.
Not only is this clumsy, it is also error-prone because there is
no straightforward way to forbid multiple modules from
connecting to a given modport. (This issue of singleton
modports will be discussed in a later section).

SystemVerilog supports modport expressions, in which a
modport not only specifies which signals in an interface are
visible, but also provides alias names for some or all of these
signals so that the connected module sees the alias name
rather than the signal’s real name. This feature can usefully
be combined with the generate construct to build an array of
modports, all identical from the point of view of their
connected modules, but making use of different signals
within the interface itself. Fig.6 shows an example of this
technique. It shows several key features of the proposed
modeling style:

• The form interface.modport_name used in
each slave module’s port list allows the connected
modport to be specified without specifying which
interface defines it. This facility makes it possible
for more than one interface implementation to
provide the same modport façade, readily allowing
progressive refinement of the bus fabric design
without disturbing the design of connected modules.

Figure 6. Generated modports

interface Gen_Intf
 #(parameter N_slaves = 2);

 logic [7:0] Adr;
 logic slave_D [0:N_slaves-1];
 logic slave_sel [0:N_slaves-1];
 logic Data;

 always_comb begin : selector
 int slave_ID;
 case (Adr) // Address decode
 42: slave_ID = 0;
 50: slave_ID = 1;
 endcase
 slave_sel = 0;
 slave_sel[slave_ID] = 1'b1;
 Data = slave_D[slave_ID];
 end : selector

 modport master_mp (
 output Adr,
 input Data
);

 generate
 genvar i;
 for (i=0; i<N_slaves; i++)
 begin : Slave
 modport slave_mp (
 input Adr,
 input .sel(slave_sel[i]),
 output .Data(slave_D[i])
);
 end : Slave
 endgenerate

endinterface : Gen_Intf

module Gen_Master(Gen_Intf.master_mp mi);
 initial begin
 mi.Adrs = 50; // select first slave
 #100
 mi.Adrs = 42; // select other slave
 end
endmodule : Gen_Master

module Gen_Slave(
 interface.slave_mp si,
 input logic data
);
 assign si.Data = data;
endmodule : Gen_Slave

module Top_Fig6(input logic d42, d50);
 Gen_Intf G ();
 Gen_Master M (G.master_mp);
 Gen_Slave S50 (G.Slave[0].slave_mp, d50);
 Gen_Slave S42 (G.Slave[1].slave_mp, d42);
endmodule : Top_Fig6

• The multiple similar modports are constructed in a
generate loop. Consequently, it is important to
understand the scope names that this generate
loop creates, so that the correctly scoped modport
instance can be hooked by each client module.

• In our example it is the interface (bus fabric) that
chooses which slave modport is selected as a
function of an address value generated by the master.
However, address decoding can instead be
performed within the client modules; it is merely
necessary for each module to provide a “selected”
signal back to the interface.

This modeling style accurately reflects bus fabric
structures in the interface. It readily allows the bus fabric to
specialize its modport instances – for example, allocating a
specific address range to each – whilst making the various
modport instances appear identical from the point of view of
a module connected to them. The author regards this as the
most natural style for using interfaces to represent bus
structures in modern designs.

Unfortunately no commercially available simulation or
synthesis tools support it, as far as the author is aware. This
is both disappointing and surprising, especially as the
SystemVerilog language reference manual explicitly
provides an example of just such usage of modport
expressions.

 V. FURTHER OPPORTUNITIES FOR THE USE OF
INTERFACES

A. Encapsulation of protocol functionality in an interface
Interfaces can contain subprograms (tasks and functions)

as well as data objects that represent interconnect. These
subprograms can be made available to connected modules
via the interface’s modports using the import construct. If
such subprograms are functions rather than tasks, and are
declared automatic so that they do not imply storage
elements, then such functions are synthesizable and offer a
means for an interface to define functionality that will
ultimately be used in a connected module. In particular, an
interface could contain a state variable and next-state
function defining the state machine that will ultimately be
synthesized into a connected module. Since a bus protocol
in an RTL design is typically implemented using a state
machine, this mechanism offers a way for an interface to
contain not only a specification of interconnect but also a
specification of the protocol that connected devices should
maintain on that interconnect. This technique has been
successfully used in a synthesizable design [2] and is
supported by several currently available tools.

B. Verification-related uses
The use of interfaces as a bridge between testbench and

device under verification has been recommended in several
published verification methodology documents such as [3]
and [4]. In this application, two non-synthesizable

SystemVerilog features – clocking block and virtual
interface – are used in conjunction with interfaces to provide
a complete, packaged solution to a number of issues relating
to configuration and timing of the connection between a
testbench and its device-under-verification. This application
of interfaces is already well established in verification
practice and widely supported by current tools, and it is not
considered further here.

C. Progressive refinement across varying levels of
abstraction
The ability to import and export subprograms through

modports of an interface offers some interesting possibilities
in simulation environments composed of models some of
which operate at a relatively high level of abstraction
(commonly known as transaction-level models) and some of
which are more concrete, perhaps including timed behavioral
models and synthesizable RTL models. Since the current
paper’s concern is with synthesizable RTL modeling, this
possibility is not considered further here.

 VI. ROBUSTNESS AND ENCAPSULATION

The approaches outlined in section IV make it possible to
create designs in which interconnect is hidden or
encapsulated in an interface. Whilst this is highly desirable
and can represent a significant benefit for RTL designers,
there are some further opportunities for improving the
robustness and packaging of such designs that are worthy of
note. Some of these are, at least in principle, supported by
the SystemVerilog language in its current form.

A. Singleton modports
By default, modports of a SystemVerilog interface are

promiscuous. There is no limit to the number of modules
that can connect to a given modport instance. Whilst this
facilitates parallel connection of numerous modules to the
same set of signals, it is entirely inappropriate when a
modport has been specialized to the needs of a specific,
single connected module (as in several of the styles shown in
section IV). It would be preferable to restrict such a modport
so that it can have at most one connected module, and it
seems appropriate to describe such a modport as a singleton.4

This singleton requirement can be met in at least four
different ways, described in the following sections.

1) Exported function
A modport can include a function export construct,

giving the interface access to a function declared inside a
connected module. Unless the extern forkjoin specification
is used (as described in clause 20.8.4 of [1]), such an export
construct becomes illegal if more than one module connects
to the modport. Regrettably, the export construct is not
supported for synthesis and as a result this technique is

4 Various dictionaries offer chaste as an antonym of
promiscuous. The author regards singleton as more

apposite in the current context.

currently unavailable. As indicated in section VI.B below,
support for this feature would not only offer singleton
modports but would also enable a useful additional design
style.

2) Drive a uwire
The Verilog-2005 standard [5] introduced a new kind of

net known as a uwire. Nets of this new kind are permitted to
have at most one driver. If an interface contains a net of the
uwire kind, and that net is driven by a module connected to
one of the interface’s modports, then there can be only one
such module. Unfortunately, the author is aware of only one
simulator, and no synthesis tools at all, that handle the uwire
construct at the time of writing.

3) Write to a variable
As already mentioned, synthesis tools permit only one

process to write to any given variable. Consequently, if a
variable exists in an interface and is written by a connected
module through a modport, there can be at most one such
connected module. However, the SystemVerilog language
permits any number of processes to write to a variable. The
singleton property therefore cannot be enforced in simulation
but merely becomes a synthesis restriction.

4) Programmer discipline
The aforementioned three ways to implement singleton

modports are all unavailable in practice. Solutions (1) and
(2) depend on language features that are not currently
supported by synthesis tools, and (3) is unsatisfactory
because the restriction is not enforced in simulation. As far
as the author is aware, it is in practice only by careful coding
that a modport can be treated as a singleton. This is usually
fairly straightforward, but it is disappointing that it must be
left to users to enforce this behavior for themselves.

B. Address decoding functionality in a connected module
Most of the styles described in section IV implement a

readback multiplexer as part of the bus fabric interface.
Such a multiplexer must be selected by means of an address
decoder of some kind, and the obvious location for this
address decoder is in the interface itself. However, this
approach means that the interface must be specialized or
parameterized for the address range of each connected
module.

An alternative, mirroring the approach taken by many
bus-oriented hardware systems, is to perform address
decoding in the connected modules. Individual modules can
then be parameterized for address range as part of the
configuration of a top-level design, and the bus fabric
remains generic. However, readback multiplexers must
nevertheless be located in the interface rather than the
connected modules. Activation of the select signals for such
multiplexers could, perhaps, be determined by the results of
calling an address-matching function supplied by each
connected module. This is infeasible with current tools,
because it requires use of the export construct in the same
way as described above in connection with singleton

modports. However, the effect can readily be mimicked by
providing an output from the connected module to convey
the result of the decoding function back into the interface.

 VII. CONCLUSIONS

Whilst the uses of SystemVerilog’s interface construct
for verification are already established, there is little
agreement on the most appropriate ways to use it in RTL
design. Of the approaches suggested in this paper, the most
promising (the use of modport expressions in modports
within a generate construct) is not supported by current
synthesis and simulation tools. It is much to be hoped that
this situation will improve in the near future. Some
interesting possibilities for parameterization of bus-based
designs could in principle be supported by the use of already-
standardized features of interfaces, but limitations of current
tools (and most especially the absence of synthesis support
for functions exported from modules into an interface) mean
that many of these possibilities are currently out of reach for
RTL designers.

A. Limitations of the language
Section VI.A shows that there is no satisfactory way,

with current tool support, to enforce singleton behavior on a
modport. Even if tool support were available, the singleton
behavior would be a side-effect of other language features.
The author regards it as a deficiency of the SystemVerilog
language that it offers no explicit means to restrict or enforce
the number of connected modules on a modport.

The modport construct provides a means to capture a
client’s view of an interface. To facilitate progressive
refinement, and to enable design of generic modules that can
inherit their interconnect protocol from whatever interface
they are connected to, it would be preferable for a modport to
be a language construct in its own right – not merely a
feature of an interface. Because modports can exist only as a
component of an interface, designers have only two choices:
either to replicate a modport definition in each and every
interface that supports that modport, or to enclose the
modport in a small interface that is then instantiated in each
interface that supports it.

ACKNOWLEDGMENTS

The author is grateful to his employers Doulos Ltd for
the time, facilities and encouragement they provided for this
work, and to his colleagues for consistently enlightening
discussion.

Cliff Cummings acted as reviewer and provided valued
feedback.

Many members of the SystemVerilog community have
unwittingly provided helpful hints during informal
discussions.

REFERENCES

[1] IEEE Std.1800-2005. IEEE Standard for SystemVerilog – Unified
Hardware Design, Specification,and Verification Language.

[2] Jensen P, Kruse T, Ecker W, 2004. SystemVerilog in Use: First RTL
Synthesis Experiences with Focus on Interfaces. SNUG Europe,
2004.

[3] Bergeron J, Cerny E, Hunter A, Nightingale A. Verification
Methodology Manual for SystemVerilog. Springer 2005.

[4] Glasser, M et al. Advanced Verification Methodology Cookbook
version 2.0. Mentor Graphics Corporation, Wilsonville, Oregon,
2006.

[5] IEEE Std.1364-2005. IEEE Standard for Verilog Hardware
Desicription Language

[6] Sutherland, S. Modeling with SystemVerilog in a Synopsys
Synthesis Design Flow Using Leda, VCS, Design Compiler and
Formality. SNUG Europe, 2006.

