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ABSTRACT

There has been much discussion about the language features introduced in Accellera’s
SystemVerilog extensions to Verilog.  Now that tools that support SystemVerilog are
becoming available, it is important to know how the language will actually be used in the
hardware design process.  This paper describes our experience with the language in the
context of a specific design.  It is hoped that sharing this experience will be of benefit to
anyone using or considering the use of SystemVerilog.
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1 Introduction
In recent years, SystemC has gained favour as a means to model and validate the behaviour
of electronic systems at a high level of abstraction, while traditional hardware description
languages (HDLs) VHDL and Verilog have retained their dominance of design entry and
module-level verification.  Meanwhile, specialised hardware verification languages (HVLs)
and their associated tools have begun to make a significant impact on both module-level and
system-level verification.

Accellera’s extensions to IEEE-Std.1364 Verilog, usually known as SystemVerilog
[Accellera 2003], hold out the promise of a single unified language to span almost the entire
system-on-chip (SoC) design flow, from module-level design and gate-level simulation all
the way up to system-level verification.  Practical tool support for SystemVerilog is now
becoming available, and this paper outlines an attempt by the authors to take a design of
modest size from concept through to implementation using SystemVerilog wherever possible.
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2 Design Example
The current paper reports our experience in implementation and verification of the design
outlined in Figure 1.  At its core is a CORDIC calculator module; this device is then made
available to the rest of a system by giving it an interface conforming to the AMBA Advanced
Peripheral Bus (APB) specification [ARM 1999], chosen for its straightforward design and
widespread adoption.

Design under test (DUT)

Input data
registers

angleIn,
xIn, yIn

APB
slave

interface

angleOut,
xOut, yOut,

readyCORDIC
rotator

start,
reduceNotRotate

APB
master

interface

APB
peripheral

bus

Test stimulus

C software
model of
rotator

stimulus

results

Results
checker

Figure 1:  Design under test and its verification environment

2.1 CORDIC calculator

Our calculator module implements the well-known CORDIC algorithm [Volder 1959].  Its
basic operation is to take a vector expressed as an (xIn, yIn) coordinate pair, and rotate it
through an angle provided as a third input value angleIn.  When this operation is complete,
the rotated vector is available on output ports xOut, yOut.  Used in this mode the module
naturally lends itself to the calculation of trigonometric functions sine and cosine, and can
also be used in modulator applications and as a polar-to-cartesian converter.
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Our implementation of the module has a single-bit mode input reduceNotRotate.  If this
bit is clear when a calculation is initiated, CORDIC rotation is performed as described in the
previous paragraph.  However, if reduceNotRotate is set, a somewhat different version
of the algorithm is applied in which the angle input angleIn is ignored and the input vector
is rotated until its y component reaches zero.  The angle of rotation required to reduce the y
component to zero is made available on output port angleOut.  This mode of operation is
appropriate for computation of the arctangent function, and for cartesian-to-polar conversion.

Our calculator module is parameterised for bit-width, but we have chosen to use 16-bit data
throughout as a specific example.

An excellent survey of theory, applications and practical implementations of CORDIC can be
found at [Andraka 1998].

2.2 Controlling the calculator module

The calculator module needs 16 clock cycles, one for each iteration of the algorithm, to
calculate each new result.  Timing of this interaction is managed by two handshake signals
start and ready, as illustrated in Figure 2.  Asserting start whilst a calculation is in
progress will cause the current calculation to be abandoned, and the new calculation will then
begin.
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Figure 2:  Control of the CORDIC calculator module
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2.3 APB interface

APB, fully described in [ARM 1999], is a simple synchronous peripheral bus having separate
parallel address and data lines.  The bus can have only one master and an arbitrary number of
slaves.  APB protocol defines just two bus cycles, read and write; these cycles each access a
single register in a single slave, and occupy two cycles of the bus clock.  Figure 3 outlines
the timing of these bus cycles.
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Figure 3:  APB read and write protocol
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APB address and write data are broadcast by the master to all slaves.  Read data, however,
uses a separate read data bus per slave; these multiple read data buses are multiplexed on to
the master’s read data bus, as shown in Figure 4.  This method avoids the need for three-state
bus interconnect.
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Figure 4:  APB read data multiplexer

3 Making use of SystemVerilog in the design
We aimed from the outset to exploit SystemVerilog and Verilog-2001 features wherever
appropriate, using Synopsys VCS version 7.1 for simulation.  Those parts of the design that
should be synthesisable (the CORDIC calculator and bus interface) have been coded using
SystemVerilog constructs that we may reasonably expect to be synthesisable.  However,
synthesis tool support for SystemVerilog is quite limited at the time of writing, and
consequently the scope of synthesisable SystemVerilog has yet to be stabilized by tool
vendors.



SNUG Europe 2004 A User’s Experience with SystemVerilog7

3.1 Verilog-2001 constructs for synthesisable design

Support for Verilog-2001 in simulation and synthesis tools is now widespread, and it offers
many features that greatly improve the clarity and expressiveness of synthesisable Verilog
code.  Until recently the authors have avoided using or recommending Verilog-2001 because
of concerns over portability and tool support.  However, for this case study we were able to
use Verilog-2001 constructs with confidence.

3.1.1 Signed vectors

Signed vectors free the RTL programmer from concerns about sign extension, and hence lead
to more readable code for arithmetic data path functions such as our CORDIC processor.
The programmer must remain vigilant, however, because Verilog arithmetic lapses into
unsigned behaviour in a number of cases that are not intuitively obvious.  Part-selects of a
signed vector are treated as unsigned even if the most significant bit is included in the part-
select.  Arithmetic expressions with one or more unsigned operand are treated as unsigned
arithmetic, even if some of the operands are signed.

3.1.2 localparam

Named constants are a vital tool in the creation of portable, readable code.  localparam
declarations provide named constants with module-local scope that cannot be inadvertently
overridden, a highly desirable and useful improvement.

3.2 SystemVerilog constructs for synthesisable design

3.2.1 Parameterised type definitions

Although the APB bus specification describes bus protocol and control signals in great detail,
it does not mandate any specific width for data and address bus; designers are expected to
choose bus widths appropriate to the system design.  Similarly, our CORDIC processor
design can be easily reconfigured for varying data path widths up to 32 bits, depending on the
application’s requirements for numerical precision.

Traditionally this kind of parameterisation for bit width has been accomplished using module
parameters.  However, module parameters in a synthesisable design must be overridden at the
instantiation site.  This is unhelpful when the bit width of a module instance is to be
determined by some property (typically bit width) of a sibling module instance, not
controlled by the parent module.

Globally visible data type definitions provide an attractive alternative solution, available for
the first time in SystemVerilog.  We defined data types to represent unsigned and signed
integers both on the APB data bus and on ports of the CORDIC rotator module.  We envisage
such definitions being encapsulated in project-wide files, used in the same way as packages
in VHDL and bringing the same benefits.

SystemVerilog3.1a is expected to add a package feature, allowing users to create type
definitions that can be imported at will into various parts of the design whilst remaining
hidden from all other parts.
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3.2.2 Array size inquiry functions

Designs that use globally-defined types may need to determine the bit width of those types, in
order to create other values or types of appropriate width.  The new SystemVerilog inquiry
function $bits() provides the required functionality.  Example 1 shows how $bits()
can be used to construct a constant whose most significant bit is set, although the width of the
constant is not otherwise known.  We found this feature made it much easier to write
parameterised modules that can infer all their parameterisation from an external, global type
definition.

T_sdata D;  // globally defined type

localparam Width = $bits(T_sdata);

...

D = {1'b1, {(Width-1){1'b0}} };

Example 1:  Using $bits() to construct a sized constant value

3.2.3 Type compatibility

SystemVerilog follows the spirit of Verilog in taking a very relaxed approach to type
compatibility.  We found that this could lead to some unexpected results.  For example, our
design defined two different named data types: a packed 16-bit vector intended to represent
the APB data bus, and a packed 16-bit vector intended to represent a signed integer in the
CORDIC processor.  Inevitably, at the processor’s bus interface it was necessary to copy
values of one of these types on to a variable of the other type.  SystemVerilog freely permits
this copy operation, with neither type conversion nor casting required.

An alternative approach would be to use two different unpacked types in this situation.
Objects of the different types would no longer be copy-compatible, and would require a type
cast operation when copying.  However, the convenient and intuitively satisfying property of
packed types, that their bit pattern is well-defined and readily matches hardware, is lost.  One
attractive compromise is to create an unpacked struct type having a single member of packed
type.  This artifice gives both the benefits of strong typing and the convenience of packed
data types, at the expense of somewhat cumbersome syntax when accessing objects of the
unpacked struct type.

It seems to us that SystemVerilog’s type system has excellent expressive power and
contributes well to self-documentation.  However, the authors’ opinion is that the
assignment-compatibility of different named packed types significantly weakens its
usefulness, although it is clear that it can be very convenient in some situations.  We are
happy to accept that this opinion may be coloured by our experience of VHDL and other
strongly-typed languages.

3.2.4 Default port connections

SystemVerilog’s default port connection mechanism using the new .* notation was used
whenever appropriate in both synthesisable code and verification code.  Example 2 shows the
instantiation of our CORDIC processor into its enclosing bus-interface module.
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CORDIC_par_seq #(

      .guardBits(3),

      .stepBits(4)

     )

    processor (

      .reduceNotRotate(bus.PWDATA[0]),

      .clock(bus.PCLK),

      .reset(async_reset),

      .*

    );

Example 2:  Instantiation using default port connection

The ability to mix named port connection with default connection, as shown in this example,
appears natural and flexible.  It reduces unnecessary repetition of port names whilst retaining
the flexibility to make any specific connections that may be required, as shown here.

We believe that this feature will prove to be a significant benefit to SystemVerilog
programmers.

3.2.5 Structural drivers on variables

SystemVerilog lifts IEEE-1364’s restriction whereby structural drivers (namely, continuous
assign statements and connections through a module’s port) may drive only objects of net
type, and procedural assignments may drive only variables.  In SystemVerilog as in standard
Verilog, any number of procedural assignments may apply values to a variable.
SystemVerilog additionally permits a variable to be driven by precisely one structural driver,
in which case there may not be any procedural assignments to it.

This extension makes the net data types redundant in many practical applications.  Tri-state
and other multi-drop schemes cannot be modelled in this way, but any signal having only one
driver can be modelled using the full expressive power of SystemVerilog’s new variable data
types.

We found this enhancement to have great practical utility when creating our design.  Our
traditional experience with Verilog has been that a signal originally declared as a reg may
well be changed to a wire, or vice versa, as the design develops and different RTL
structures are used to apply values to that signal.  In SystemVerilog the signal can be
declared as logic with confidence, and this declaration will not need to change as the RTL
design evolves.  Furthermore, the simulator will inform us at elaboration if we have
mistakenly applied more than one structural driver to a logic or other variable.  In this way,
many mistakes that are easily made as a design evolves can be caught long before simulation
begins.

Although our design did not lend itself to extensive use of structured data types, we note also
that structural drivers on variables make it possible to use any data types both on module
ports and on the signals connected to them.
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3.2.6 struct and other compound data types

SystemVerilog distinguishes between packed and unpacked data structures.  packed
structures, typified by ordinary vector variables such as

logic [7:0] DataByte;

are guaranteed to be stored as a contiguous array of bits so that it is possible to treat them as
numeric values.  By contrast, unpacked structures are stored in an implementation-
dependent fashion; a value of unpacked structured type cannot be handled as a single unit,
except when copying it to a target of the same type.

We considered the use of packed struct data types, for example when representing the
control registers of our processor module.  Our module has a readable register containing just
two useful bits, interrupted and busy.  Example 3 shows the traditional Verilog
approach to mapping this readable register on to 16-bit bus data.  Example 4 shows the
corresponding SystemVerilog struct definition that we used in the design.

assign status_word = { 14'b0, interrupted, busy };

Example 3: Assigning individual bits to parts of a word

typedef struct packed {

    logic [15:2] junk;

    logic        interrupted;

    logic        busy

  } T_status;

Example 4: SystemVerilog struct representing a word containing status bits

Using the type definition from Example 4 we could make a variable of type T_status and
freely copy it to and from an ordinary 16-bit logic vector.  However, we found this
encouraged us to make assignments to the various components of the structure from widely
different places in our RTL code.  This can give rise to unexpected and awkward errors,
because SystemVerilog insists that all components of a packed structure variable must have
the same kind of driver (all procedural, or all structural).  It is easy to fall foul of this rule if
assignments to the various parts of the structure occur far apart in the source code.  We
therefore chose to keep the various components of the register quite separate, and gather them
into a single 16-bit word using a simple continuous assignment similar to that in Example 3.
Alternatively we could have chosen to represent the status value in an unpacked struct, which
can have a mixture of structural and procedural drivers on its various elements.  This coding
style issue, combined with the weakness of type checking in SystemVerilog, led us to be less
enthusiastic about structured data types than we had originally anticipated.
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4 Making use of SystemVerilog for verification

4.1 Creating a reference model

An untimed-functional reference model was written in standard C using ordinary
trigonometric functions from the C floating-point math library.  Several “helper” functions
were written to convert between 16-bit fixed-point representation and C double values.
These helper functions made it possible for the reference model to accept 16-bit fixed-point
inputs and outputs whilst using standard floating-point library functions internally.  At this
stage, no attempt was made to model the CORDIC algorithm itself in C.

Simulation tools available to the authors do not yet support SystemVerilog’s Direct
Programming Interface (DPI).  Consequently we chose to use the DirectC feature in VCS 7.1
[Synopsys 2003a], which offers extern "C" declaration of functions to be imported into
Verilog, with closely similar functionality to DPI’s import "DPI" mechanism.  Our C
functions were straightforward and required only the simplest functionality of DPI or
DirectC.

It was clear that C functions can be integrated much more easily in this way than through the
PLI.  We suspect that many verification engineers who have avoided PLI programming
because of its complexity will be able to make effective use of DirectC or DPI to integrate
reference models and other verification functionality into their SystemVerilog simulations.

4.2 SystemVerilog for verification

Tools available to the authors at the time of writing support only a limited subset of the
extensive SystemVerilog 3.1 verification features.  As mentioned in the conclusion, we aim
to take this case study forward, adding further verification features as tool support becomes
available.  The source code available on the authors’ web site makes extensive use of
SystemVerilog assertions to check for correct behaviour at various interfaces in the design.

4.3 Use of SystemVerilog interfaces

As already mentioned, our sample design has an interface to a standard bus structure.  We
took this as a natural opportunity to exploit SystemVerilog’s interface mechanism, allowing
module-like encapsulation of communication that can nevertheless be connected to a port of a
module instance.

4.4 The APB interface

An interface was created to model the APB interconnect bus.  This bus does not require
tri-state or multi-drop interconnect, and therefore it was appropriate to model all the bus
signals as vector or scalar logic variables within the interface itself.

Using variables to represent bus signals in this way has one especially attractive
consequence: the variables can be manipulated by tasks in the interface itself.  Such tasks can
implement the execution of a bus cycle by some external bus master, in the same manner as a
traditional Verilog Bus Functional Model (BFM).  Consequently we were able to create a
behavioural test fixture that invoked these BFM tasks to perform bus cycles and thus verify
correct operation of the design under test (DUT).
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4.5 Modports

We provided three different modports on the APB interface.

4.5.1 RTL master modport

This modport is intended for connection to a bus master module.  Such a bus master module
should directly drive all physical signals in the bus, except the readback data signal PRDATA
driven by slaves on read cycles.  There must be only one master on an APB bus.

4.5.2 RTL slave modport

This modport is intended for connection to a slave module such as our DUT.  Bus slaves
should receive all physical signals in the bus, except for their readback data signal.  There can
be many slave modules on a single APB bus segment, but the readback data multiplexer must
have as many inputs as there are slaves (see Figure 4) so that the correct slave’s data may be
returned to the bus master on read cycles.  As we describe later, implementation of this
readback multiplexer seems problematic in SystemVerilog.
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4.5.3 Behavioural master modport

This modport is intended for connection to a test harness.  The test harness is expected to
drive the bus clock in a straightforward manner, but it should perform read and write cycles
by invoking tasks implemented within the interface itself.  These tasks are presented through
the modport using import task, so that the test harness does not need to make
hierarchical name reference to the interface but instead can work through its named port.
This arrangement is illustrated in Figure 5.

module top_level ();
  test_driver Master (.apb(TheBus.TF_master));
  APB TheBus ();
  my_slave DUT(.apb(TheBus.RTL_slave));
endmodule

module test_driver (
 APB.TF_master apb
);
...
initial begin
  apb.write(...);
  ...

Master

interface APB;

  logic PWRITE;

  task write (...);
    ...
    PWRITE = 1;
    ...
  endtask

  modport TF_master (
    import task write
  );

  modport RTL_slave (
    input PWRITE;
    ...
  );

TheBus

module my_slave (
  APB.RTL_slave apb
);

always @(...) begin
  ...
  if (apb.PWRITE) ...

DUT

Figure 5:  Behavioural master modport

4.6 Implementation challenges

A bus such as APB, having multiplexed readback, requires each of its slave connections to be
distinct so that on read cycles the bus itself can assert the appropriate slave’s PSEL (selector)
signal and steer that slave’s readback data to the master’s PRDATA (readback data input)
signal.  This implies that the bus structure itself should incorporate a decoder to generate the
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selector signals and a multiplexer to steer the readback data.  There is no way to accomplish
this directly in a SystemVerilog interface.

Instead, we must export some of the bus’s functionality to the slave modules.  This is
comparatively straightforward in simulation, but it is not clear whether our solution will be
synthesisable by current-generation tools.

4.6.1 Selecting the active slave

In APB a slave is selected by assertion of its dedicated PSEL signal.  This signal can readily
be created using a decoder on some part of the address, enabled by a common select timing
signal from the master.  It is clear that this selection functionality could easily be
implemented in the slave rather than in the bus, and this is the solution we have adopted.  A
common select signal from the master is broadcast, along with the address, to all slaves; each
slave gates the select signal with the output of an equality comparator, testing an appropriate
part of the address for match with the slave’s own address constant.  This is an entirely
reasonable solution both in hardware and in simulation, and it poses no difficulties in
SystemVerilog.

4.6.2 Steering the readback data

In APB read cycles, the selected slave drives its read data on to its own dedicated read data
signal.  A multiplexer or other steering arrangement, switched by the same address bits that
are used to choose the selected slave, then drives a copy of that data on to the master’s
readback data signal.  Although it is possible to provide this functionality using a tri-state
bus, this solution is unattractive for on-chip implementations and we prefer to model a
multiplexer directly.  However, this does not appear to be possible in any intuitively
satisfying way using SystemVerilog interfaces and modports.  It would be necessary to
supply a completely separate modport for each possible slave.  Such a solution with multiple
modports could clearly be synthesisable and directly reflects the expected hardware
implementation, but it offers little to users hoping for a smooth migration from a very flexible
high-level system model all the way to a final RTL implementation.

4.6.3 A solution using common modports

We have implemented a simulation model of the RTL slaves by having each slave develop its
own select signal, as described in section 4.6.1 above.  For write cycles this is
straightforward.  For read cycles we provide a common readback data signal PRDATA as a
variable in the interface itself, available to slaves through the RTL_slave modport.  A slave
that is the target of a read cycle makes a procedural assignment to this variable through the
modport.  Slaves that are not the target of a given read cycle simply refrain from assigning to
this variable.  Whilst this approach correctly models the system’s behaviour in simulation, we
have grave doubts about whether such a modelling style can be expected to be synthesisable.
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5 Potential benefits of interfaces and modports

5.1 Smooth migration from transaction-level to RTL modelling

We looked to the interface/modport mechanism to provide us with a modelling discipline in
which we could freely mix RTL and behavioural models.  In particular we hoped to allow our
behavioural models, operating at a transaction level, to interact with RTL models connected
to the same interface through different modports.  We expected to be able to do this using
features of the interface itself to map transactions (in the form of task calls) on to bus cycles,
and vice versa.  In this way we hoped to show SystemVerilog providing a completely smooth
migration path from transaction-based, untimed modelling through to synthesisable RTL.

We have not yet found how to achieve this goal with SystemVerilog in designs using
interconnect schemes such as APB.  In buses of this type, some interconnect functionality
properly belongs in the bus itself rather than in the modules connected to that bus.  Although
SystemVerilog already provides the means to model such a scheme at any level of
abstraction, those different models cannot readily share a common set of boundaries between
modules and interface, because of the way functionality must be moved between the
connected slaves and the interface itself.

As long as SystemVerilog lacks facilities to parameterise and differentiate the various
connected instances of a modport, we are unable to see a satisfying solution to this challenge.
We have experimented with some possible schemes for a solution, and these are outlined on
the source code available on the web site referenced in the Appendix.

5.2 Robust elaboration-time checking of modport usage

Modports impose a direction on the connections between a module and an interface.  Port
directions in traditional Verilog have surprisingly little significance, because a module is free
to drive its input ports if it so wishes.  This freedom is retained for interfaces, because a
module can freely access any object in an interface through a port of interface type.  Given
that this freedom remains available, we hoped that modports could provide more robust and
restrictive checking of the usage of their signals; however, this does not appear to be the case.
[Accellera 2003] appears silent on this issue.  We anticipate that SystemVerilog 3.1a will be
much more closely prescriptive in this regard.

6 Conclusions
Our early experiences with SystemVerilog have been encouraging in many ways.  Tools
available at the time of writing have significant limitations, as might be expected so soon
after publication of the standard and when the “industrial-strength” version 3.1a of the
standard is still under development.  Indeed, EDA vendors have responded much more
promptly to the challenge of adding SystemVerilog features than they did to the demands of
Verilog-2001.

Our experience is that many new features of SystemVerilog offer immediate, direct and
tangible benefit both to RTL designers and to verification engineers.  We have only scratched
the surface of SystemVerilog’s range of capabilities in this short study, and we look forward
to reporting in the near future on experience with assertions, DPI and testbench automation.
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Our most important concerns relate to SystemVerilog’s provision for a smooth migration
path from untimed transaction-based abstract modelling to traditional RTL simulation,
without disruption to system architecture as this refinement progresses.  We hoped that the
interfaces and modports mechanism could provide a means to achieve this smooth transition,
and thus to differentiate SystemVerilog strongly from the diverse but effective modelling
techniques that already crowd the marketplace.  However, we found that limitations of the
modport mechanism forced us to make disruptive modifications to module and interface
boundaries as the design progressed.  We look to other SystemVerilog practitioners, and to
Accellera, to show us how this challenge can be addressed.
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