A

4

DOULOS

Doulos Verification TechNote 1:
Making Sense of
Transaction Level Modeling in OVM

Welcome...

to Doulos Verification TechNotes, an occasional series of articles on topics that
we at Doulos hope will be of interest to anyone involved in verification of digital
designs. Rather than trying to duplicate the plentiful tutorial and reference
material that's already available, we wanted TechNotes to take a thought-
provoking sideways look at some of the issues we think are most interesting in
the world of verification. We hope you'll agree.

Verification TechNote articles are backed up by simple working code examples
on our web site, where you can also find downloadable PDF copies of the
articles themselves. They are available, together with many other SystemVerilog
resources including conference papers and tutorial examples, at

www.doulos.com/knowhow/sysverilog

You can also find information about worldwide availability of our training
courses featuring SystemVerilog, OVM and VMM, along with online sales of the
highly respected Golden Reference Guide series, at

www.doulos.com/systemverilog

Feedback

We welcome feedback on the content of these TechNotes. If you have any
comments, or ideas for topics you would like to see in future editions of
Verification TechNotes, please contact us by email at info@doulos.com.

Copyright © 2009 by Doulos. All rights reserved. i

All trademarks are acknowledged as the property of their respective owners.
Information in this booklet is provided "as is" and without warranty of any kind.

You are welcome to make a reasonable number of copies of this material for
your own personal use or to share with colleagues, but any copy must include
the Doulos logo and the whole of this copyright notice.

ii Copyright © 2009 by Doulos. All rights reserved.

Verification
TechNote 1

Making Sense of Transaction
Level Modeling in OVM

This Doulos Verification TechNote demystifies the fascinating, powerful and
subtle Transaction Level Modeling mechanism that is used throughout the Open
Verification Methodology for conveying data from one part of a testbench to
another.

It is not intended to be a basic OVM tutorial; such resources are widely available
from many providers including Doulos. Rather, it is aimed at anyone who has
made a start with OVM and feels that they would benefit from having a deeper
understanding of the TLM mechanisms that lie at its heart.

Your primary source for OVM source code and documentation is, as always,
WWw.ovmworld.org

Working example code illustrating the ideas described here can be downloaded

from the Doulos web site:

www.doulos.com/knowhow/sysverilog

Copyright © 2009 by Doulos. All rights reserved. 1

Making Sense of
Transaction Level Modeling in OVM

Some background

Whenever you read about OVM you are sure to find the phrase transaction-level
modeling (TLM) or transaction-level connection. That innocent-sounding phrase
in fact captures one of the pivotal ideas of OVM:

connection between verification components is standardized,
so that any component can pass data to and from any other
component provided both components are happy to work with
the same kind of data.

OVM's connection scheme is based on the TLM-T transaction-level modeling
conventions that have long been popular in the world of SystemC. This kind of
connection is based not on signals and events like the connections between
modules in Verilog or VHDL, but on procedural connection; the fundamental
unit of communication is a function call.

From Modules to Classes

Before we get to grips with TLM communication between objects in a class-
based SystemVerilog testbench, let's review the way ordinary Verilog modules
get connected together. We will find that regular Verilog port connection has
some fascinating and important properties that we should aim to mimic when
constructing an object-oriented SystemVerilog testbench.

module Top (...);
module Sender (wire [7:0] Data; module Receiver (
output [7:0] Y, > input [7:0] D,
output Strobe, input D_Ena,

wire Write; output Done,

input Ready,
>

wire Ready;

<

Figure 1: Connecting Verilog modules

2 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

The kind of connection shown in Figure 1 is so familiar that it is hardly worth
describing! If we look a little deeper, though, we can see that it has some
subtle properties that make it remarkably flexible.

Our example 8-bit data interface has a simple strobe/ready handshake
controlling dataflow from Sender to Receiver module. That data transfer
protocol has been defined independently of any modules that use it.
Consequently we can now write the Sender and Receiver modules in isolation;
neither module needs to know anything about the other one. Indeed, each
module does not even know what sort of module it is connected to. It simply
knows that it has a set of ports corresponding to the specified protocol, and it
manages those signals appropriately to follow the specification. The existence
of the ports is a guarantee that the enclosing module will connect appropriate
signals to those ports.

Once we have a Sender and Receiver module with the right kind of ports,
supporting the right protocol, we can connect them together. This connection
is achieved not by the modules themselves, but by the enclosing module that
instances them. Even now, each module knows nothing about what it's
connected to. The wires can have names that are quite different from the port
names, and everything still works correctly.

This complete independence of a module from its environment's connections is
known as decoupling. It allows us to write modules in isolation, knowing only
the specification of an interface protocol. Thanks to this decoupling we can
divide our design problem into pieces that are small and independent. From the
point of view of testbench design, though, there is one big drawback: the
communication operates at a very low level of detail, with every signal transition
needing to be explicitly controlled or monitored by code in the modules. For a
testbench we need to work at a much higher level of abstraction.

Using Task Calls for Abstract Communication

As we move away from RTL design modules and out into a testbench, we
gradually leave behind us the need to do everything at the level of individual
signals. To illustrate this shift, let's imagine we want to verify the operation of
the Receiver module in Figure 1. Of course we now need some code in our
testbench to control that 8-bit data interface and its handshake, but we want to
hide the details and concentrate on the high-level activity that's taking place -

Copyright © 2009 by Doulos. All rights reserved. 3

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

the transfer of data from testbench to receiver. Naturally we will write a
SystemVerilog task to manage that:

module Testbench;

wire [7:0] Data; Receiver

a

1

1

1

1

|

1 do

| @ (posedge clk);
i while (!Ready);
i Data = data;

i #1 Write = 1;
i

1

1

1

1

1

1

1

1

1

1

1

a

1

1

1

1

1

L

1

! . .

H wire Write;
1

1

1 .

1 wire Ready;
1

1

1

do .4

@ (posedge clk); ,

while (Ready); H
#1 write = 0; r----- D EREEEEEEEEEE R
Vinitial i
endtask : for (i:O; i<10; i++) i
, send (i) ; !
1

Figure 2: Testbench BFM task

This is good: our testbench can now generate test stimulus not in terms of
signal transitions, but in terms of the data that we want to transfer.

Graduating to Classes

A task of this kind, designed to generate signal-level activity conforming to a
given protocol, is often known as a BFM task (Bus Functional Model). For small
block-level testbenches it is useful in its own right, but by packaging it in a
SystemVerilog class we can turn it into a truly re-usable component that can
be incorporated into an OVM testbench.

Putting the task into a class means that we need to use virtual interface
connection to reach the wires, but that's another topic for another TechNote;
let's assume that has been done. So now we have a Sender_BFM class that
knows how to send bytes of data on the appropriate interface.

4 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

The next step in constructing our testbench is to create a stimulus data
generator. Because we already have a BFM to do all the low-level work of
wiggling Verilog signals, our data generator can be just that — something that
creates a stream of interesting data words for the driver BFM to send. But
what should it do with those words? Let's sketch the testbench we now have:

class Data_Generator
extends ovm_component; class Sender_BFM
extends ovm_component;
Ce -
rand byte data;
task run(); task send (—»
repeat (100) begin input [7:0] data);
randomize (data) ; ///// .
send data to BFM ??? endtask <
end endclass
endtask

Figure 3: BFM and data generator classes

Here, in a nutshell, is the problem that TLM aims to solve. The data generator
object wishes to call the send method in the BFM object, but both classes must
be written in a way that is completely re-usable: neither is permitted to know
anything about the other one. It all works so beautifully for modules, with
ports isolating each module from its immediate environment. What is the
equivalent for classes?

Copyright © 2009 by Doulos. All rights reserved. 5

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

Ports and Exports in OVM

TLM Connection Decouples Components

In our example we have a source component (the data generator) and a
consumer component (the BFM). Code in the source component should call a
task in the consumer component, but we wish to keep the two components
isolated from each other. Figure 4 indicates the overall approach we will use to
reconcile these apparently conflicting requirements.

send_port send_export

Data generator object BFM object

send_port .put{data) ; taskput(...);

TLM connection

Figure 4: Port, connection and export

The source object does not attempt to call directly into the consumer. Instead,
it calls into a port. That port is connected to an export on the consumer, and
this export makes a call to the method's implementation within the consumer.
In this way, the source in fact calls a method in the consumer, but neither
source nor consumer needs to know about the other.

Unfortunately, Figure 4 is just a high-level picture and does not give us the
details we need to use this idea. We need to understand how those three
mechanisms — ports, connections and exports — really work.

A Disclaimer

Typical real OVM testbenches use a specific pattern of component-to-
component connection that we will describe in more detail later. At this stage

6 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

we will focus on getting a clear understanding of how the TLM communication
mechanism works. If you have already seen a complete OVM testbench, please
don't be surprised if what we show you here does not exactly match that
model. Towards the end of this TechNote we will review the conventional
idioms for using TLM communication in an OVM testbench.

Isolating the Caller with a Port

Our data generator class creates some data and then must send it on to a data
consumer. It is very important to us that we should not be concerned with
exactly what or where this data consumer might be; we want to write the data
generator completely independently. A regular module does this by having one
or more ports, and an OVM component class can do much the same by
equipping itself with a TLM port.

Just as there are input, output and inout ports on a module, there are various
different kinds of port available for TLM connection. In this case we want to
send (put) some data, and we want to wait (block) until the consumer
component has finished with the data before we continue; so we use an
ovmm_blocking_put_port. There are several other kinds of port that we
will discuss later in this note.

In addition to their direction, ports on a module must be characterized for the
type of data that will flow through them - it makes no sense to put 32-bit data
through a [7:0] port, for example. In the same way, our
ovm_blocking_put_port must be characterized for data type. Since the
port is in fact an object of class type, we can parameterize it.

The ovm_blocking_put_port has a put method. The data generator
class can call this put method whenever it has new data to pass on, and its
responsibility is then fulfilled. The generator has no need to concern itself with
what is connected to its port. Figure 5 sketches the pattern of code you need
to write when implementing this arrangement. Later we will look at the
constructor arguments, and other details, of ports in OVM.

Copyright © 2009 by Doulos. All rights reserved. 7

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

rand byte data;

function void build();
super.build();
send_port = new(...);

endfunction

task run();
repeat (100) begin
randomize (data) ;
send_port.put (data) ;
end
endtask

endclass

class Data_Generator extends ovm_component;

ovm_blocking put_port #(byte) send port;

send_port
[] p

Figure 5: Data generator class with blocking put port

Ports, Exports and Imps

To understand the export mechanism, we must first look at the various possible
relationships among ports, exports and the objects that use them. Figure 6
shows how we could use ports and exports to connect a method call to its
implementation through multiple levels of component hierarchy:

compB

Q

compC

compA

my_port.put();

task put();

compD

Figure 6: Hierarchical ports and exports

8 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

The overall flow of activity in Figure 6 is:

e Component compA has a port (square bubble). To call a method in
another component, it places a call to its own port's put method.

e compA's port is connected to a port of compB. Thanks to this connection,
compA's method call is passed on to compB's port.

e The port on compB is connected to an export (round bubble) on its sibling
component compC. As far as compB is concerned, the put method is
provided by that export on compC.

e In fact, though, compC does not have an implementation of the put
method. Instead, it passes on the call by connecting its export to the
corresponding export on compD.

e The real, concrete implementation of the put method is in compD.

Looking more closely at Figure 6 we can see that the export on compD has a
special status. All the other ports and exports simply pass on a method call
from one place to another. The export on compD, however, is intimately
associated with an implementation of the method. As a result, this must be a
special kind of export known as an imp.

An imp?

No, that's not a mischievous little demon! It's an abbreviation for
implementation.

Isolating the Target with an Imp

The ultimate target of the method call - for example, compD in Figure 6, or our
BFM - must have an appropriate imp object to expose its method to the
outside world. Just as we needed to choose and parameterize the data source's
port correctly, so we must choose the correct kind of imp to do the job. In this
case we need an ovm_blocking_put_imp to match the original caller's
ovmm_blocking_put_port. Unlike a port, which is simply parameterized for
the type of data flowing through it, an imp needs two parameters: the type of
data, and the class that contains the method implementation.

Bearing all this in mind we can now sketch a version of the BFM that exposes its
send method through an imp.

Copyright © 2009 by Doulos. All rights reserved. 9

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

class Sender_BFM extends ovm_component;

send_export ovm_blocking_put_imp
(byte, Sender_BFM)
[:Z send_export;

task put (input byte data);
send (data) ;
endtask

function void build();

super.build();

send_export = new("send_export", this);
endfunction

task send(input byte data);

Figure 7: BFM class with blocking put imp

The key to the whole mechanism can be found in the constructor call:
send_export = new("send_export", this);

The string name "send_export™" is merely a label, used for debugging and
reporting. Much more important, the newly constructed send_export object
is given a reference (this) to its enclosing (parent) component, the BFM. That
allows the imp to reach back into its parent and call the put method that it
finds there.

Unfortunately we have no choice about the name of the target method. For an
ovm_blocking_put_imp the method must be named put; but the method
in our original BFM was named send. So we must either rename the method
in our BFM or, as we have done here, pass on the call by writing a simple
wrapper method named put.

Finally, note that our ovm_blocking_put_imp object is named
send_export rather than send_imp. This makes sense because, from
outside the component, exports and imps look the same and connect in the
same way.

10 Copyright © 2009 by Doulos. All rights reserved.

A

4

DOULOS

Requiring and Providing
Looking again at the diagram we can see that each connection arrow
represents a relationship. At one end is a method call, or a port, that requires
an implementation to exist (but does not care where or how that
implementation is provided). At the other end is a port, export or method body
that provides the required functionality. In general:
e a method call requires there to be an implementation;
e an implementation provides the required functionality;
e TLM connection links call to implementation through a series of ports and
exports.
provides D requires B
requires provides
I
provides
requires
my_port.put();

Figure 8: The requires/provides relationship

Connecting the Ports

We have now created both ends of the TLM connection: a task call made
through a port, and a task implementation called from an imp. Our next job is
to link them together, just as we might use wires to connect the ports of two
Verilog module instances.

We can see from Figure 6 that there are three possible kinds of connection
among TLM ports and exports. Working through that diagram from left to
right:

Copyright © 2009 by Doulos. All rights reserved. 1

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

e Port-to-port connections link a port on an inner (child) object to a port on
its parent object. In this way, the child object's function call is redirected to
the parent's port. From there, of course, it will be connected to an export
on some other object.

e Port-to-export connections link sibling objects within a given level of
hierarchy.

e Export-to-export connections link an export on a parent object to an
export or imp on one of its children. In this way, the parent appears to
implement a function or task, but in fact its child object provides the
implementation.

The internal machinery of these connections in OVM is quite complicated, but
using them is extremely simple. Every port and export has a connect method
that can be used to link it to another port or export. As a user, you must simply
remember to call the connect method of the requiring port, and you must
supply the providing port or export as its argument:

requirer.connect (provider) ;

As we have already discussed, the two ends of this chain of connections are
handled in a slightly different way. At the originating end (compA in Figure 6)
the code simply calls a method in its port. At the destination end (compD in
Figure 6) there is an implementation of the method, associated with — and
called from - the special kind of export known as an imp. All other connections
are made using the ports' or exports' connect methods.

Who Makes the Connections?

All OVM components have a builtin connect phase method that is
automatically invoked at the correct point in the life of an OVM testbench - just
after the components have been created using build, but before any
simulation begins. Obviously, the components' connect methods provide the
right place to make TLM port connections. But which component should do it?
Ideally we want the connections between sub-components (children) to be
managed by their parent because it is the parent, and only the parent, that
knows about the organization of its children. Consequently, the three different
forms of port connection should be managed like this:

12 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

compB

function void connect ();
super.connect () ;
compA.portA.connect (this.portB);
endfunction

portA

compA

portB

Figure 9: Connecting a child's port to its parent's port

In Figure 9 the enclosing block compB wishes to pass on a method call from its
child component compA. It does so by connecting its child's port to its own.
Note that, because it is the child port that requires the function, it is the child
port's connect method that must be called.

compB

portB [:1:::%(:) exportC

compC

function void connect ();
super.connect () ;
compB.portB.connect (compC.exportC);
endfunction

Figure 10: Connecting a child's port to its sibling's export or imp

Figure 10 shows a parent component taking responsibility for connecting a port

on one of its children (compB) to an export on another of its children (compC).
Again note that it is the requiring port's connect method that is called.

Copyright © 2009 by Doulos. All rights reserved.

13

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

exportC compC

O

exportD
function void connect ();

compD
super.connect () ;

this.exportC.connect (compD.exportD) ;
endfunction

Figure 11: Connecting a parent's export to its child's export or imp

Finally, in Figure 11 we see a parent component compC that provides a method
through its export. However, it chooses to delegate the implementation of that
method to its child component compD. Consequently the parent component
must connect its own export to the export on its child. Once again note
carefully that it is the parent's export that requires the method, and so it is the
parent's connect method that must be called.

Note also that at this level we do not know whether the export on compD is in
fact an export or an imp. Either is acceptable and will satisfy the requirement of
the parent's export. If compD has an export then it in turn presumably
delegates the implementation to its own child component, but at the level
shown in Figure 11 we do not need to concern ourselves with that. As far as
compC's connection is concerned, compD provides the implementation.

14 Copyright © 2009 by Doulos. All rights reserved.

A

DOULOS

Kinds of TLM Connection

Control Flow vs. Data Flow

Up to now we have consistently used the blocking_put form of TLM
connection. The data source calls a put method to give away some data; the
data recipient (our BFM) provides a put method that accepts the data. It is the
data source that is in control and the data recipient that is the target.

It is also possible to reverse the roles, so that the data recipient is in control. In
this case the recipient (BFM, in our example) would call a get method to pull
data from the source, which would provide a target get method.

Consequently it is important to be clear about the relationship between control
flow and data flow in a TLM connection.

Put transfer: control and data flow are in the same direction

When using put transfer, control and data flow in the same direction: the data
source is also in control of the timing by calling a put method. The data
recipient passively accepts a call to its put method. Both data and control flow
from source to recipient. TLM connections link a port on the source to an
export on the recipient.

Get transfer: control and data flow are in opposite directions

When using get transfer, control and data flow in opposite directions: the data
source passively accepts a call to its get method, but the data recipient chooses
when this should happen by calling a get method. Control flows from
recipient to source; data flows the other way. TLM connections link a port on
the recipient to an export on the source. The TLM port/export arrangements
are relative to control flow.

Transport: bidirectional data flow

It is also possible to have a transport connection in which a single connection
has both put and get methods, allowing tight coupling between a request

Copyright © 2009 by Doulos. All rights reserved. 15

NAO Ut L o asuas Burien [l

Making Sense of
Transaction Level Modeling in OVM

and its response. As before, though, the TLM connections link a port on the
caller to an export on the target; the target provides implementations of both
put and get, and these methods are called under control of the caller through
the TLM connection.

Blocking vs. Nonblocking

Our put example was a blocking call. When the data source calls its port's put
method, that call executes the data recipient's put method, with the data
source stalled (blocked) until that method returns. A similar description would
apply to the get method called by a data recipient that initiates a TLM
transaction. We can visualize the blocking get or put activity rather like this:

time

>

call blocking method return from
blocking method

initiator activity _______________ﬁ__.
C TLM connection _)

target activity

execution of blocking
method

Figure 12: Control flow in a blocking call

Note that the target does nothing unless the initiator explicitly calls it, and the
initiator does nothing while waiting for the target to finish its work. The two
components work in lockstep, with activity alternating between them under
control of the initiator's method calls. TLM connection makes it possible for the
initiator and target to remain decoupled - each of them can be written without
detailed knowledge of the other, or of the environment in which both are
enclosed.

16 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

As an alternative to the blocking control flow of Figure 12, TLM offers a
nonblocking control flow.

time >

call nonblocking method
in zero time

initiator activity)lA)|4 >
CH TLM connection _)

target activity [Y- ! \ ---------------------

execution of nonblocking target activity caused by the
method nonblocking method

Figure 13: Control flow using nonblocking calls

Using a nonblocking call such as try_put or try_get, the initiator tries to do
a data transfer and returns immediately. Consequently the initiator's activity is
continuous and uninterrupted, and is not directly synchronized to the target's
activity. That's why this style of communication is sometimes known as
asynchronous in the software world - it has nothing to do with asynchronous
hardware! Of course, we can expect that the initiator's action is likely to start
some time-consuming activity in the target - indicated by the gray arrow. This
proceeds in parallel with the initiator's continuing activity.

There may, though, be an interesting problem when the initiator's second
method call occurs. If the target is still busy dealing with the first call from the
initiator, it may be unable to accept the initiator's request. That is the reason
why these nonblocking methods are named try_put and try_get. Unlike
the blocking get or put, which simply waits for its target to finish before
returning, try_put and try_get return a status code to indicate success or
failure. In both cases they return immediately, but if the function call returns
"false" then the initiator knows that the target could not accept the call and it
should try again later.

Copyright © 2009 by Doulos. All rights reserved. 17

INAO Ul L 4O 9suss Buiyeln

Making Sense of
Transaction Level Modeling in OVM

Modeling Idioms in OVM

That concludes our overview of the TLM communication mechanisms as
implemented in SystemVerilog for OVM. Naturally you will want to explore the
details more fully; the code examples on our web site, and the source code of
the OVM kit itself, will be helpful as your experience grows.

However, it would be misleading to finish here without first taking a look at the
most common ways in which this powerful technology is used in OVM.
Although the full repertoire of TLM methods and connections is available to
you, and can be useful when creating custom verification components, there
are two special forms of TLM connection that you will encounter more often
than any other in typical OVM testbenches. They are analysis ports and
sequence pull ports.

Analysis ports

Another Doulos TechNote in this series, Observing Activity in VMM and OVM
Testbenches, surveys the special needs of observation in testbenches and
highlights the tools provided to facilitate it in both OVM and VMM
methodologies. OVM uses a specialized form of TLM connection known as an
analysis port, which offers a modified nonblocking put interface that is
especially appropriate to the needs of observation.

Sequence pull ports

OVM strongly encourages the construction of verification components using an
agent architecture in which stimulus is created by a data generator known as a
sequencer and passed to a pin-level BFM known as a driver. As you might
expect, the communication between them uses TLM. The driver is responsible
for timing, and therefore acts as the initiator; the connection is known as a
sequence pull connection because the driver "pulls" data items from the
sequencer as it needs them. Of course this could be done using a regular TLM
blocking_get connection, but the full power of the sequences mechanism
requires a somewhat more complex interaction between driver and sequencer.
To support this flexibility, the sequence pull connection is extended with a

18 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

number of additional methods to provide enhanced communication between H
driver and sequencer. Comprehensive training and support material on this
topic is available from Doulos and other sources.

INAQ Ul AL JO 3suss Buie|n

Copyright © 2009 by Doulos. All rights reserved. 19

